996 resultados para Matrix Equations
Resumo:
matrix
Resumo:
Animation that rains down appropriate words relating to qualitative research
Resumo:
El presente trabajo intenta estimar si las empresas emplean estratégicamente la deuda para limitar la entrada de potenciales rivales. Mediante la metodología de Método Generalizado de Momentos (GMM) se evalúa el efecto que tienen los activos específicos, la cuota de mercado y el tamaño, como proxies de las rentas del mercado, y las barreras de entrada sobre los niveles de endeudamiento, a nivel de empresa para Colombia, durante 1995-2003. Se encuentra que las empresas utilizan los activos específicos para limitar la entrada al mercado y que el endeudamiento decrece a medida que las empresas aumentan su cuota en el mercado
Resumo:
Registro con código de documento duplicado y modificado posteriormente
Resumo:
Incluye anexos y un apéndice didáctico
Resumo:
Se presenta un estudio sobre los criterios metodológicos, estrategias y actividades que deben adoptarse en las modalidades formativas semipresenciales, para determinar las claves que garantizan la eficacia de la docencia apoyada en entornos virtuales. Se aportan orientaciones básicas que facilitan al profesorado universitario, en el marco del nuevo Espacio Europeo de Educación Superior, la creación de los complementos virtuales en sus asignaturas presenciales y la formulación de e-actividades para el desarrollo de competencias genéricas. El contenido se estructura en dos partes: en la primera se describe el proyecto MATRIX, el entorno virtual creado para él y las asignaturas implicadas en el proyecto. En una segunda parte se analizan los resultados obtenidos, los datos cuantitativos y cualitativos y los indicadores de calidad derivados de los resultados obtenidos.
Resumo:
Monográfico con el título: 'Web 2.0 : dispositivos móviles y abiertos para el aprendizaje'. Resumen basado en el de la publicación
Resumo:
In this paper a cell by cell anisotropic adaptive mesh technique is added to an existing staggered mesh Lagrange plus remap finite element ALE code for the solution of the Euler equations. The quadrilateral finite elements may be subdivided isotropically or anisotropically and a hierarchical data structure is employed. An efficient computational method is proposed, which only solves on the finest level of resolution that exists for each part of the domain with disjoint or hanging nodes being used at resolution transitions. The Lagrangian, equipotential mesh relaxation and advection (solution remapping) steps are generalised so that they may be applied on the dynamic mesh. It is shown that for a radial Sod problem and a two-dimensional Riemann problem the anisotropic adaptive mesh method runs over eight times faster.
Resumo:
Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.
Resumo:
The goal of this study is to evaluate the effect of mass lumping on the dispersion properties of four finite-element velocity/surface-elevation pairs that are used to approximate the linear shallow-water equations. For each pair, the dispersion relation, obtained using the mass lumping technique, is computed and analysed for both gravity and Rossby waves. The dispersion relations are compared with those obtained for the consistent schemes (without lumping) and the continuous case. The P0-P1, RT0 and P-P1 pairs are shown to preserve good dispersive properties when the mass matrix is lumped. Test problems to simulate fast gravity and slow Rossby waves are in good agreement with the analytical results.
Resumo:
We consider a class of boundary integral equations that arise in the study of strongly elliptic BVPs in unbounded domains of the form $D = \{(x, z)\in \mathbb{R}^{n+1} : x\in \mathbb{R}^n, z > f(x)\}$ where $f : \mathbb{R}^n \to\mathbb{R}$ is a sufficiently smooth bounded and continuous function. A number of specific problems of this type, for example acoustic scattering problems, problems involving elastic waves, and problems in potential theory, have been reformulated as second kind integral equations $u+Ku = v$ in the space $BC$ of bounded, continuous functions. Having recourse to the so-called limit operator method, we address two questions for the operator $A = I + K$ under consideration, with an emphasis on the function space setting $BC$. Firstly, under which conditions is $A$ a Fredholm operator, and, secondly, when is the finite section method applicable to $A$?