984 resultados para Magnetic Materials - Metamagnetism
Resumo:
Magnetic resonance cholangiography (MRC) relies on the strong T-2 signal from stationary liquids, in this case bile, to generate images. No contrast agents are required, and the failure rate and risk of serious complications is lower than with endoscopic retrograde cholangiopancreatography (ERCP). Data from MRC can be summated to produce an image much like the cholangiogram obtained by using ERCP. In addition, MRC and conventional MRI can provide information about the biliary and other anatomy above and below a biliary obstruction. This provides information for therapeutic intervention that is probably most useful for hilar and intrahepatic biliary obstruction. Magnetic resonance cholangiography appears to be similar to ERCP with respect to sensitivity and specificity in detecting lesions causing biliary obstruction, and in the diagnosis of choledocholithiasis. It is also suited to the assessment of biliary anatomy (including the assessment of surgical bile-duct injuries) and intrahepatic biliary pathology. However, ERCP can be therapeutic as well as diagnostic, and MRC should be limited to situations where intervention is unlikely, where intrahepatic or hilar pathology is suspected, to delineate the biliary anatomy prior to other interventions, or after failed or inadequate ERCP. Magnetic resonance angiography (MRA) relies on the properties of flowing liquids to generate images. It is particularly suited to assessment of the hepatic vasculature and appears as good as conventional angiography. It has been shown to be useful in delineating vascular anatomy prior to liver transplantation or insertion of a transjugular intrahepatic portasystemic shunt. Magnetic resonance angiography may also be useful in predicting subsequent variceal haemorrhage in patients with oesophageal varices. (C) 2000 Blackwell Science Asia Pty Ltd.
Resumo:
In the present work, various theories predicting the critical diameter for the absence of capillary condensation and hysteresis are applied to experimental adsorption isotherms of vapors on regular mesoporous materials. Among the various theories studied, the tensile strength approximation proposed by the authors was found to be the most successful. Reversibility of nitrogen adsorption at 77.4 K was studied on pure MCM-41 of various pore sizes, as well as mixtures of pure MCM-41 samples in a 1:1 ratio. The results of PSD and hysteresis on MCM-41 mixtures are close to that expected from studies of the pure materials. The estimates of hysteresis critical temperature and diameter of MCM-41, HMS, FSM and KIT materials are also provided.
Resumo:
Ischaemic preconditioning in rats was studied using MRI. Ischaemic preconditioning was induced, using an intraluminal filament method, by 30 min middle cerebral artery occlusion (MCAO), and imaged 24 h later. The secondary insult of 100 min MCAO was induced 3 days following preconditioning and imaged 24 and 72 h later. Twenty four hours following ischaemic preconditioning most rats showed small sub-cortical hyperintense regions not seen in sham-preconditioned rats. Twenty-four hours and 72 h following the secondary insult preconditioned animals showed significantly smaller lesions (24 h = 112 +/- 31 mm(3), mean +/- standard error; 72 h = 80 +/- 35 mm(3)) which were confined to the striatum, than controls (24 h = 234 +/- 32 mm(3), p = 0.026; 72 h = 275 +/- 37 mm(3), p = 0.003). In addition during Lesion maturation from 24 to 72 h post-secondary MCAO, preconditioned rats displayed an average reduction in lesion size as measured by MRI whereas sham-preconditioned rats displayed increases in lesion size; this is the first report of such differential lesion volume evolution in cerebral ischaemic preconditioning. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Mesoporous Ti-substituted aluminophosphates (AlPOs) with a hexagonal, cubic and lamellar pore structure, characteristic of MCM-41, MCM-48. and MCM-50, respectively, were synthesized. The stability of these mesophases upon template removal was studied. The pore structures, surface properties, and local atom environments of Al, P, and Ti of the hexagonal and cubic Ti-containing mesoporous products were extensively characterized using X-ray diffraction, magic angle spinning nuclear magnetic resonance, AAS, XPS, ultraviolet-visible, and adsorption of nitrogen and water vapor techniques while the lamellar mesophase was not further characterized due to its very poor thermal stability. Ti-containing mesoporous AlPO materials show a reasonable thermal stability upon template removal, a hydrophilic surface property, and high porosity showing application potentials in catalytic oxidation of hydrocarbons. (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
We derive a general thermo-mechanical theory for particulate materials consisting of granules of arbitrary whose material points possess three translational and three independent rotational degrees of freedom. Additional field variables are the translational and rotational granular temperatures, the kinetic energies shape and size. The kinematics of granulate is described within the framework of a polar continuum theory of the velocity and spin fluctuations respectively and the usual thermodynamic temperature. We distinguish between averages over particle categories (averages in mass/velocity and moment of inertia/spin space, respectively) and particle phases where the average extends over distinct subsets of particle categories (multi phase flows). The relationship between the thermal energy in the granular system and phonon energy in a molecular system is briefly discussed in the main body of the paper and discussed in detail in the Appendix A. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Little is known of the neural mechanisms of marsupial olfaction. However, functional magnetic resonance imaging (fMRI) has made it possible to visualize dynamic brain function in mammals without invasion. In this study, central processing of urinary pheromones was investigated in the brown antechinus, Antechinus stuartii, using fMRI. Images were obtained from 18 subjects (11 males, 7 females) in response to conspecific urinary olfactory stimuli. Significant indiscriminate activation occurred in the accessory olfactory bulb, entorhinal, frontal, and parietal cortices in response to both male and female urine. The paraventricular nucleus of hypothalamus, ventrolateral thalamic nucleus, and medial preoptic area were only activated in response to male urine. Results of this MRI study indicate that projections of accessory olfactory system are activated by chemo-sensory cues. Furthermore, it appears that, based on these experiments, urinary pheromones may act on the hypothalamo-pituitary-adrenocortical axis via the paraventricular nucleus of the hypothalamus and may play an important role in the unique life history pattern of A. stuartii. Finally, this study has demonstrated that fMRI may be a powerful tool for investigations of olfactory processes in mammals.
Resumo:
This paper addresses the broader unresolved issues posed by the patenting of genetic materials that are central to dealing with the tension between the patenting and competition schemes, namely distinguishing between what has already been 'discovered' and economically useful innovations (including the thresholds for novelty and non-obviousness), the exclusion of some subject matter from patenting and the restrictions on access to genetic resources to facilitate further innovation. The possible solutions of raising the threshold patenting standards, taking advantage of international intellectual property law developments and compulsory licensing are examined as ways to ameliorate the possibly detrimental consequences of current genetic material patenting practices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This work reports the synthesis, characterization, and evaluation of new porphyrins tailored to become biodiesel fluorescent markers. The compounds were obtained by the synthetic modification of the commercially available porphyrin 5,10,15,20-meso-tetrakis(pentafluorophenyl)porphyrin (TPPF(20)) using ethanol and hexadecan-1-ol (cetylic alcohol) as nucleophilic reagents. The stability of the marked biodiesel fuel solutions was investigated every 15 days for a total period of 3 months, and under different storage temperature and light exposure condition, simulating the conventional stock conditions. The influence of the different substituents of the porphyrins on the fluorescence properties of the biodiesel fuel markers was also assessed. The resulting porphyrins were highly soluble in biodiesel fuel and displayed strong fluorescence characterized by two strong emission bands. The fluorescent markers did not affect the biodiesel physical properties and were stable in storage conditions for at least 3 months at a concentration of 4 ppm. The best storage condition was found to be absence of light and 6 degrees C; the limit of detection by photoluminescence technique had magnitude of 10(-13) mol L(-1). The synthesized porphyrins were characterized by nuclear magnetic resonance ((1)H-NMR and (19)F-NMR), mass spectrometry (HRMS), ultraviolet visible absorption spectroscopy, and photoluminescence spectroscopy. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this study the interaction between magnetic nanoparticles (MNPs) surface-coated with meso-2,3-dimercaptosuccinic acid (DMSA) with both bovine serum albumin (BSA) and human serum albumin (HSA) was investigated. The binding of the MNP-DMSA was probed by the fluorescence quenching of the BSA and HSA tryptophan residue. Magnetic resonance and light microscopy analyses were carried out in in vivo tests using female Swiss mice. The binding constants (K(b)) and the complex stoichiometries (n) indicate that MNP-DMSA/BSA and MNP-DMSA/HSA complexes have low association profiles. After five minutes following intravenous injection of MNP-DMSA into mice`s blood stream we found the lung firstly target by the MNP-DMSA, followed by the liver in a latter stage. This finding suggests that the nanoparticle`s DMSA-coating process probably hides the thiol group, through which albumin usually binds. This indicates that biocompatible MNP-DMSA is a very promising material system to be used as a drug delivery system (DDS), primarily for lung cancer treatment.
Resumo:
The fabrication of heavy-duty printer heads involves a great deal of grinding work. Previously in the printer manufacturing industry, four grinding procedures were manually conducted in four grinding machines, respectively. The productivity of the whole grinding process was low due to the long loading time. Also, the machine floor space occupation was large because of the four separate grinding machines. The manual operation also caused inconsistent quality. This paper reports the system and process development of a highly integrated and automated high-speed grinding system for printer heads. The developed system, which is believed to be the first of its kind, not only produces printer heads of consistently good quality, but also significantly reduces the cycle time and machine floor space occupation.
Resumo:
Room-temperature measurements of the magnetic susceptibility of Bovine Serum Albumin-based nanocapsules (50 to 300 nm in size) loaded with different amounts of maghemite nanoparticles (7.6 nm average diameter) have been carried out in this study The field (H) dependence of the imaginary peak susceptibility (f(P)) of the nanocomposite samples was investigated in the range of 0 to 4 kOe. From the analysis of the f(P) x H curves the concentration (N) dependence of the effective maghemite magnetocrystalline energy barrier (E) was obtained. Analysis of the E x N data was performed using a modified Morup-Tronc [Phys. Rev. Lett. 72, 3278 (1994)] model, from which a huge contribution from the magnetocrystalline surface anisotropy was observed.
Resumo:
Objective: To determine the cost effectiveness of a magnetic resonance imaging scan (MRI) within 5 days of injury compared with the usual management of occult scaphoid fracture. Methods: All patients with suspected scaphoid fractures in five hospitals were invited to participate in a randomised controlled trial of usual treatment with or without an MRI scan. Healthcare costs were compared, and a cost effectiveness analysis of the use of MRI in this scenario was performed. Results: Twenty eight of the 37 patients identified were randomised: 17 in the control group, 11 in the MRI group. The groups were similar at baseline and follow up in terms of number of scaphoid fractures, other injuries, pain, and function. Of the patients without fracture, the MRI group had significantly fewer days immobilised: a median of 3.0 (interquartile range 3.0-3.0) v 10.0 (7-12) in the control group (p = 0.006). The MRI group used fewer healthcare units (median 3.0, interquartile range 2.0-4.25) than the control group (5.0, 3.0-6.5) (p = 0.03 for the difference). However, the median cost of health care in the MRI group ($594.35 AUD, $551.35-667.23) was slightly higher than in the control group ($428.15, $124.40-702.65) (p = 0.19 for the difference). The mean incremental cost effectiveness ratio derived from this simulation was that MRI costs $44.37 per day saved from unnecessary immobilisation (95% confidence interval $4.29 to $101.02). An illustrative willingness to pay was calculated using a combination of the trials measure of the subjects' individual productivity losses and the average daily earnings. Conclusions: Use of MRI in the management of occult scaphoid fracture reduces the number of days of unnecessary immobilisation and use of healthcare units. Healthcare costs increased non-significantly in relation to the use of MRI in this setting. However, when productivity losses are considered, MRI may be considered cost effective, depending on the individual case.
Magnetic Investigation of CoFe(2)O(4) Nanoparticles Supported in Biocompatible Polymeric Microsphere
Resumo:
Magnetic investigation of spinel ferrite nanoparticles dispersed in biocompatible polymeric microspheres is reported in this study. X-ray diffraction data analysis confirms the presence of nanosized CoFe(2)O(4) particles (mean size of similar to 8 nm). This finding is corroborated by transmission electron microscopy micrographs. Magnetization isotherms suggest a spin disorder likely occurring at the nanoparticle`s surface. The saturation magnetization value is used to estimate particle concentration of 1.6 x 10(18) cm(-3) dispersed in the polymeric template. A T(1/2) dependence of the coercive field is determined in the low-temperature region (T < 30 K). The model of non-interacting mono-domains is used to estimate an effective magnetic anisotropy of K(eff) = 0.6 x 10(5) J/m(3). The K(eff) value we found is lower than the value reported for spherically-shaped CoFe(2)O(4) nanoparticles, though consistent with the low coercive field observed in the investigated sample.