976 resultados para MEDIATED PRESYNAPTIC INHIBITION
Resumo:
Latent inhibition (LI) is an important model for understanding cognitive deficits in schizophrenia, Disruption of LI is thought to result from an inability to ignore irrelevant stimuli. The study investigated LI in schizophrenic patients by using Pavlovian conditioning of electrodermal responses in a complete within-subject design. Thirty-two schizophrenic patients, ( 16 acute. unmedicated and 16 medicated patients) and 16 healthy control subjects (matched with respect to age and gender) participated in the study. The experiment consisted of two stages: preexposure and conditioning. During preexposure two visual stimuli were presented, one of which served as the to-be-conditioned stimulus (CSp +) and the other one was the not-to-be-conditioned stimulus (CSp -) during the following conditioning ( = acquisition). During acquisition. two novel visual stimuli (CSn + and CSn -) were introduced. A reaction time task was used as the unconditioned stimulus (US). LI was defined as the difference in response differentiation observed between proexposed and non-preexposed sets of CS + and CS -. During preexposure. the schizophrenic patients did not differ in electrodermal responding from the control subjects, neither concerning the extent of orienting nor the course of habituation. The exposure to novel stimuli at the beginning of the acquisition elicited reduced orienting responses in unmedicated patients compared to medicated patients and control subjects, LI was observed in medicated schizophrenic patients and healthy controls. but not in acute unmedicated patients. Furthermore LI was found to be correlated with the duration of illness: it was attenuated in patients who had suffered their first psychotic episode. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Backhousia citriodora is typical of the many commercially valuable woody Australian Myrtaceae species that are recalcitrant in forming adventitious roots from cuttings after maturation. A series of experiments were conducted to identify an endogenous rooting inhibitor in line with established criteria. Endogenous levels of citral were correlated with the rooting capacities of juvenile versus mature, and easy- versus difficult-to-root genotypes of B. citriodora, in both winter and summer. The biological activity of citral was confirmed in bioassays on mung beans and easy-to-root B. citriodora seedlings. Evidence of a common mechanism of root inhibition with other species in the Myrtaceae and the role of action of citral are discussed.
Resumo:
Acyl glucuronides are reactive metabolites of carboxylate drugs, able to undergo a number of reactions in vitro and in vivo, including isomerization via intramolecular rearrangement and covalent adduct formation with proteins. The intrinsic reactivity of a particular acyl glucuronide depends upon the chemical makeup of the drug moiety. The least reactive acyl glucuronide yet reported is valproic acid acyl glucuronide (VPA-G), which is the major metabolite of the antiepileptic agent valproic acid (VPA). In this study, we showed that both VPA-G and its rearrangement isomers (iso-VPA-G) interacted with bovine brain microtubular protein (MTP, comprised of 85% tubulin and 15% microtubule associated proteins {MAPs}). MTP was incubated with VPA, VPA-G and iso-VPA-G for 2 h at room temperature and pH 7.5 at various concentrations up to 4 mM. VPA-G and iso-VPA-G caused dose-dependent inhibition of assembly of MTP into microtubules, with 50% inhibition (IC50) values of 1.0 and 0.2 mM respectively, suggesting that iso-VPA-G has five times more inhibitory potential than VPA-G. VPA itself did not inhibit microtubule formation except at very high concentrations (greater than or equal to2 mM). Dialysis to remove unbound VPA-G and iso-VPA-G (prior to the assembly assay) diminished inhibition while not removing it. Comparison of covalent binding of VPA-G and iso-VPA-G (using [C-14]-labelled species) showed that adduct formation was much greater for iso-vTA-G. When [C-14]-iso-VPA-G was reacted with MTP in the presence of sodium cyanide (to stabilize glycation adducts), subsequent separation into tubulin and MAPs fractions by ion exchange chromatography revealed that 78 and 22% of the covalent binding occurred with the MAPs and tubulin fractions respectively. These experiments support the notion of both covalent and reversible binding playing parts in the inhibition of microtubule formation from MTP (though the acyl glucuronide of VPA is less important than its rearrangement isomers in this regard), and that both tubulin and (perhaps more importantly) MAPs form adducts with acyl glucuronides. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Recent studies have shown that phox homology (PX) domains act as phosphoinositide-binding motifs. The majority of PX domains studied show binding to phosphatidylinositol 3-monophosphate (Ptdlns(3)P), an association that allows the host protein to localize to membranes of the endocytic pathway. One issue, however, is whether PX domains may have alternative phosphoinositide binding specificities that could target their host protein to distinct subcellular compartments or allow their allosteric regulation by phosphoinositides other than PtdIns(3)P. It has been reported that the PX domain of sorting nexin 1 (SNX1) specifically binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P-3) (Zhong, Q., Lazar, C. S., Tronchere, H., Sato, T., Meerloo, T., Yeo, M., Songyang, Z., Emr, S. D., and Gill, G. N. (2002) Proc. Natl. Acad. Sci. U. S. A. 99,6767-6772). In the present study, we have shown that whereas SNX1 binds PtdIns(3,4,5)P-3 in protein:lipid overlay assays, in liposomes-based assays, binding is observed to PtdIns(3)P and phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P-2) but not to PtdIns(3,4,5)P-3. To address the significance of PtdIns(3,4,5)P-3 binding, we examined the subcellular localization of SNX1 under conditions in which plasma membrane PtdIns(3,4,5)P-3 levels were significantly elevated. Under these conditions, we failed to observe association of SNX1 with this membrane. However, consistent with the binding to PtdIns(3)P and PtdIns(3,5)P-2 being of more physiological significance was the observation that the association of SNX1 with an early endosomal compartment was dependent on a 3-phosphoinositide-binding PX domain and the presence of PtdIns(3)P on this compartment. Finally, we somal association of SNX1 is important for its ability to regulate the targeting of internalized epidermal growth factor receptor for lysosomal degradation.
Resumo:
Cadherin cell-cell adhesion molecules are important determinants of morphogenesis and tissue patterning. C-cadherin plays a key role in the cell-upon-cell movements seen during Xenopus gastrulation. In particular, regulated changes in C-cadherin adhesion critically influence convergence-extension movements, thereby determining organization of the body plan. It is also predicted that remodelling of cadherin adhesive contacts is important for such cell-on-cell movements to occur. The recent demonstration that Epithelial (E-) cadherin is capable of undergoing endocytic trafficking to and from the cell surface presents a potential mechanism for rapid remodelling of such adhesive contacts. To test the potential role for C-cadherin endocytosis during convergence-extension, we expressed in early Xenopus embryos a dominantly-inhibitory mutant of the GTPase, dynamin, a key regulator of clathrin-mediated endocytosis. We report that this dynamin mutant significantly blocked the elongation of animal cap explants in response to activin, accompanied by inhibition of C-cadherin endocytosis. We propose that dynamin-dependent endocytosis of C-cadherin plays an important role in remodelling adhesive contacts during convergence-extension movements in the early Xenopus embryo.
Resumo:
This study integrated the research streams of computer-mediated communication (CMC) and group conflict by comparing the expression of different types of conflict in CMC groups and face-to face (FTF) groups over time. The main aim of the study was to compare the cues-filtered-out approach against the social information processing theory A laboratory study was conducted with 39 groups (19 CMC and 20 FTF) in which members were required to work together over three sessions. The frequencies of task, process, and relationship conflict were analyzed. Findings supported the social information processing theory. There was more process and relationship conflict in CMC groups compared to FTF groups on Day 1. However, this difference disappeared on Days 2 and 3. There was no difference between CMC and FTF groups in the amount of task conflict expressed on any day.
Resumo:
Eph receptor tyrosine kinases and ephrins regulate morphogenesis in the developing embryo where they effect adhesion and motility of interacting cells. Although scarcely expressed in adult tissues, Eph receptors and ephrins are overexpressed in a range of tumours. In malignant melanoma, increased Eph and ephrin expression levels correlate with metastatic progression. We have examined cellular and biochemical responses of EphA3-expressing melanoma cell lines and human epithelial kidney 293T cells to stimulation with polymeric ephrin-A5 in solution and with surfaces of defined ephrin-A5 densities. Within minutes, rapid reorganisation of the actin and myosin cytoskeleton occurs through activation of RhoA, leading to the retraction of cellular protrusions, membrane blebbing and detachment, but not apoptosis. These responses are inhibited by monomeric ephrin-A5, showing that receptor clustering is required for this EphA3 response. Furthermore, the adapter CrkII, which associates with tyrosine-phosphorylated EphA3 in vitro, is recruited in vivo to ephrin-A5-stimulated EphA3. Expression of an SH3-domain mutated CrkII ablates cell rounding, blebbing and detachment. Our results suggest that recruitment of CrkII and activation of Rho signalling are responsible for EphA3-mediated cell rounding, blebbing and de-adhesion, and that ephrin-A5-mediated receptor clustering and EphA3 tyrosine kinase activity are essential for this response.
Resumo:
Clinical trials showing the benefits of reducing the effects of TNF-alpha in rheumatoid arthritis have highlighted the key role of the cytokine TNF-alpha in this inflammatory condition. A new approach to reducing the effects of TNF-alpha is to decrease its synthesis by inhibiting TNF-alpha converting enzyme with GW3333. In rat models of arthritis, GW3333 has some beneficial effects. Further longer-term studies of GW3333 in animal models are required to determine whether its benefit is maintained. TACE inhibition may represent a new approach to treating inflammation.
Resumo:
Both angiotensin-converting enzyme (ACE) inhibitors and AT-1 receptor antagonists reduce the effects of angiotensin II, however they may have different clinical effects. This is because the ACE inhibitors, but not the AT-1 receptor antagonists, increase the levels of substance P, bradykinin and tissue plasminogen activator. The AT-1 receptor antagonists, but not the ACE inhibitors, are capable of inhibiting the effects of angiotensin II produced by enzymes other than ACE. On the basis of the present clinical trial evidence, AT-1 receptor antagonists, rather than the ACE inhibitors, should be used to treat hypertension associated with left ventricular (LV) hypertrophy. Both groups of drugs are useful when hypertension is not complicated by LV hypertrophy, and in diabetes. In the treatment of diabetes with or without hypertension, there is good clinical support for the use of either an ACE inhibitor or an AT-1 receptor antagonist. ACE inhibitors are recommended in the treatment of renal disease that is not associated with diabetes, after myocardial infarction when left ventricular dysfunction is present, and in heart failure. As the incidence of cough is much lower with the AT-1 receptor antagonists, these can be substituted for ACE inhibitors in patients with hypertension or heart failure who have persistent cough. Preliminary studies suggest that combining an AT-1 receptor antagonist with an ACE inhibitor may be more effective than an ACE inhibitor alone in the treatment of hypertension, diabetes with hypertension, renal disease without diabetes and heart failure. However, further trials are required before combination therapy can be recommended in these conditions.
Resumo:
Endocytosis of cell-surface proteins via specific pathways is critical for their function. We show that multiple glycosylphosphatidylinositol-anchored proteins (GPI-APs) are endocytosed to the recycling endosomal compartment but not to the Golgi via a nonclathrin, noncaveolae mediated pathway. GPI anchoring is a positive signal for internalization into rab5-independent tubular-vesicular endosomes also responsible for a major fraction of fluid-phase uptake; molecules merely lacking cytoplasmic extensions are not included. Unlike the internalization of detergent-resistant membrane (DRM)-associated interleukin 2 receptor, endocytosis of DRM-associated GPI-APs is unaffected by inhibition of RhoA or dynamin 2 activity. Inhibition of Rho family GTPase cdc42, but not Rac1, reduces fluid-phase uptake and redistributes GPI-APs to the clathrin-mediated pathway. These results describe a distinct constitutive pinocytic pathway, specifically regulated by cdc42.
Resumo:
The synaptic conductance of the On-Off direction-selective ganglion cells was measured during visual stimulation to determine whether the direction selectivity is a property of the circuitry presynaptic to the ganglion cells or is generated by postsynaptic interaction of excitatory and inhibitory inputs. Three synaptic asymmetries were identified that contribute to the generation of direction-selective responses: (1) a presynaptic mechanism producing stronger excitation in the preferred direction, (2) a presynaptic mechanism producing stronger inhibition in the opposite direction, and (3) postsynaptic interaction of excitation with spatially offset inhibition. Although the on- and off-responses showed the same directional tuning, the off-response was generated by all three mechanisms, whereas the on- response was generated primarily by the two presynaptic mechanisms. The results indicate that, within a single neuron, different strategies are used within distinct dendritic arbors to accomplish the same neural computation.
Resumo:
1 Inhibition of rat platelet aggregation by the nitric oxide (NO) donor MAHMA NONOate (Z-1-{N-methyl-N-[6-(N-methylammoniohexyl)amino]}diazen-l-ium-1,2-diolate) was investigated. The aims were to compare its anti-aggregatory effect with vasorelaxation, to determine the effects of the soluble guanylate cyclase inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-ajquinoxalin-1-one), and to investigate the possible role of activation of sarco-encloplasmic reticulum calcium-ATPase (SERCA), independent of soluble guanylate cyclase, using thapsigargin. 2 MAHMA NONOate concentration-dependently inhibited sub-maximal aggregation responses to collagen (2 - 10 mug ml(-1)) and adenosine diphosphate (ADP; 2 mum) in platelet rich plasma. It was (i) more effective at inhibiting aggregation induced by collagen than by ADP, and (ii) less potent at inhibiting platelet aggregation than relaxing rat pulmonary artery. 3 ODQ (10 mum) caused only a small shift (approximately half a log unit) in the concentration-response curve to MAHMA NONOate irrespective of the aggregating agent. 4 The NO-independent activator of soluble guanylate cyclase, YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzy] indazole; 1 - 100 mum), did not inhibit aggregation. The cGMP analogue, 8-pCPT-cGMP (8-(4-chlorophenylthio)guanosine 3'5' cyclic monophosphate; 0.1 - 1 mm), caused minimal inhibition. 5 On collagen-aggregated platelets responses to MAHMA NONOate (ODQ 10 PM present) were abolished by thapsigargin (200 nm). On ADP-aggregated platelets thapsigargin caused partial inhibition. 6 Results with S-nitrosoglutathione (GSNO) resembled those with MAHMA NONOate. Glyceryl trinitrate and sodium nitroprusside were poor inhibitors of aggregation. 7 Thus inhibition of rat platelet aggregation by MAHMA NONOate (like GSNO) is largely ODQ-resistant and, by implication, independent of soluble guanylate cyclase. A likely mechanism of inhibition is activation of SERCA.
Resumo:
Recent laboratory studies have demonstrated that Prunus necrotic ringspot virus (PNRSV) (family Bromoviridae) can be readily transmitted when thrips and virus-bearing pollen are placed together on to test plants. For this transmission mechanism to result in stonefruit tree infection in the field, PNRSV-bearing pollen must be deposited onto surfaces of stonefruit trees on which thrips also occur. In a previous paper, we demonstrated that almost all pollen in a PNRSV-infected Japanese plum orchard in southeastern Queensland was deposited onto flowers, whereas few grains occurred on leaves and none on stems. Here, we present results of our investigation of thrips species composition, distribution and abundance on stonefruit trees in the same study area as our previous pollen deposition study. We collected a total of 2010 adult thrips from 13 orchards during the 1989, 1991 and 1992 flowering seasons of which all but 14 were in the suborder Terebrantia. Most (97.4%) terebrantian thrips were of three species, Thrips imaginis, Thrips australis and Thrips tabaci. Thrips tabaci as well as species mixtures that included T imaginis, T australis and T tabaci have been shown to transmit PNRSV via infected pollen in laboratory tests. Adult thrips were frequently collected from flowers but rarely from leaves and never from stems. Large and significant differences in numbers of T imaginis, T australis and T tabaci adults in flowers occurred among orchards and between seasons. No factor was conclusively related to thrips numbers but flowers of late-flowering stonefruit varieties tended to hold more thrips than those of early-flowering varieties. Our results indicate that the common thrips species present on stonefruit trees in the Granite Belt are also ones previously shown to transmit PNRSV via infected pollen in the laboratory and that these thrips are concentrated in stonefruit flowers where most stonefruit pollen is deposited. These results contribute to mounting circumstantial evidence that stonefruit flowers may be inoculated with PNRSV via an interaction of thrips with virus-bearing pollen and that this transmission mechanism may be an important cause of new tree infections in the field.
Resumo:
In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NES1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G2/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G2 checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G2/M checkpoint.