1000 resultados para Learning environnement
Resumo:
Abstract : This work is concerned with the development and application of novel unsupervised learning methods, having in mind two target applications: the analysis of forensic case data and the classification of remote sensing images. First, a method based on a symbolic optimization of the inter-sample distance measure is proposed to improve the flexibility of spectral clustering algorithms, and applied to the problem of forensic case data. This distance is optimized using a loss function related to the preservation of neighborhood structure between the input space and the space of principal components, and solutions are found using genetic programming. Results are compared to a variety of state-of--the-art clustering algorithms. Subsequently, a new large-scale clustering method based on a joint optimization of feature extraction and classification is proposed and applied to various databases, including two hyperspectral remote sensing images. The algorithm makes uses of a functional model (e.g., a neural network) for clustering which is trained by stochastic gradient descent. Results indicate that such a technique can easily scale to huge databases, can avoid the so-called out-of-sample problem, and can compete with or even outperform existing clustering algorithms on both artificial data and real remote sensing images. This is verified on small databases as well as very large problems. Résumé : Ce travail de recherche porte sur le développement et l'application de méthodes d'apprentissage dites non supervisées. Les applications visées par ces méthodes sont l'analyse de données forensiques et la classification d'images hyperspectrales en télédétection. Dans un premier temps, une méthodologie de classification non supervisée fondée sur l'optimisation symbolique d'une mesure de distance inter-échantillons est proposée. Cette mesure est obtenue en optimisant une fonction de coût reliée à la préservation de la structure de voisinage d'un point entre l'espace des variables initiales et l'espace des composantes principales. Cette méthode est appliquée à l'analyse de données forensiques et comparée à un éventail de méthodes déjà existantes. En second lieu, une méthode fondée sur une optimisation conjointe des tâches de sélection de variables et de classification est implémentée dans un réseau de neurones et appliquée à diverses bases de données, dont deux images hyperspectrales. Le réseau de neurones est entraîné à l'aide d'un algorithme de gradient stochastique, ce qui rend cette technique applicable à des images de très haute résolution. Les résultats de l'application de cette dernière montrent que l'utilisation d'une telle technique permet de classifier de très grandes bases de données sans difficulté et donne des résultats avantageusement comparables aux méthodes existantes.
Resumo:
Audit report on the Muscatine Agricultural Learning Center for the year ended December 31, 2011 and the six months ended December 31, 2010
Resumo:
At the University of Lausanne third-year medical students are given the task of spending a month investigating a question of community medicine. In 2009, four students evaluated the legitimacy of health insurers intervening in the management of depression. They found that health insurers put pressure on public authorities during the development of legislation governing the health system and reimbursement for treatment. This fact emerged during the scientific investigation led jointly by the team in the course of the "module of immersion in community medicine." This paper presents each step of their study. The example chosen illustrates the learning objectives covered by the module.
Resumo:
This paper presents multiple kernel learning (MKL) regression as an exploratory spatial data analysis and modelling tool. The MKL approach is introduced as an extension of support vector regression, where MKL uses dedicated kernels to divide a given task into sub-problems and to treat them separately in an effective way. It provides better interpretability to non-linear robust kernel regression at the cost of a more complex numerical optimization. In particular, we investigate the use of MKL as a tool that allows us to avoid using ad-hoc topographic indices as covariables in statistical models in complex terrains. Instead, MKL learns these relationships from the data in a non-parametric fashion. A study on data simulated from real terrain features confirms the ability of MKL to enhance the interpretability of data-driven models and to aid feature selection without degrading predictive performances. Here we examine the stability of the MKL algorithm with respect to the number of training data samples and to the presence of noise. The results of a real case study are also presented, where MKL is able to exploit a large set of terrain features computed at multiple spatial scales, when predicting mean wind speed in an Alpine region.
Resumo:
At the Lausanne University, 5th year medical students were trained in Motivational interviewing (MI). Eight hours of training improved their competence in the use of this approach. This experience supports the implementation of MI training in medical schools. Motivational interviewing allows the health professional to actively involve the patient in this behavior change process (drinking, smoking, diet, exercise, medication adherence, etc.), by encouraging reflection and reinforcing personal motivation and resources.
Resumo:
The present research deals with the review of the analysis and modeling of Swiss franc interest rate curves (IRC) by using unsupervised (SOM, Gaussian Mixtures) and supervised machine (MLP) learning algorithms. IRC are considered as objects embedded into different feature spaces: maturities; maturity-date, parameters of Nelson-Siegel model (NSM). Analysis of NSM parameters and their temporal and clustering structures helps to understand the relevance of model and its potential use for the forecasting. Mapping of IRC in a maturity-date feature space is presented and analyzed for the visualization and forecasting purposes.
Resumo:
This study assesses gender differences in spatial and non-spatial relational learning and memory in adult humans behaving freely in a real-world, open-field environment. In Experiment 1, we tested the use of proximal landmarks as conditional cues allowing subjects to predict the location of rewards hidden in one of two sets of three distinct locations. Subjects were tested in two different conditions: (1) when local visual cues marked the potentially-rewarded locations, and (2) when no local visual cues marked the potentially-rewarded locations. We found that only 17 of 20 adults (8 males, 9 females) used the proximal landmarks to predict the locations of the rewards. Although females exhibited higher exploratory behavior at the beginning of testing, males and females discriminated the potentially-rewarded locations similarly when local visual cues were present. Interestingly, when the spatial and local information conflicted in predicting the reward locations, males considered both spatial and local information, whereas females ignored the spatial information. However, in the absence of local visual cues females discriminated the potentially-rewarded locations as well as males. In Experiment 2, subjects (9 males, 9 females) were tested with three asymmetrically-arranged rewarded locations, which were marked by local cues on alternate trials. Again, females discriminated the rewarded locations as well as males in the presence or absence of local cues. In sum, although particular aspects of task performance might differ between genders, we found no evidence that women have poorer allocentric spatial relational learning and memory abilities than men in a real-world, open-field environment.
Resumo:
Audit report on the Muscatine Agricultural Learning Center for the year ended December 31, 2012
Resumo:
Scientific reporting and communication is a challenging topic for which traditional study programs do not offer structured learning activities on a regular basis. This paper reports on the development and implementation of a web application and associated learning activities that intend to raise the awareness of reporting and communication issues among students in forensic science and law. The project covers interdisciplinary case studies based on a library of written reports about forensic examinations. Special features of the web framework, in particular a report annotation tool, support the design of various individual and group learning activities that focus on the development of knowledge and competence in dealing with reporting and communication challenges in the students' future areas of professional activity.
Resumo:
This research analyses the actual use and conception of the ICT mobility that a life long learning group of students have. The students have participated in a Mobile Learning experience along an online postgraduate course, which was designed under a traditional e-learning perspective. The students received a tablet PC (iPad) in order to work at the course and also to use it in their personal and professional life. A complete and original pre-test / post-test questionnaire was applied before and after the course. This instrument was scientifically validated. Thru the questionnaire, uses tendency and students perceptions were studied. Frequencies, purposes, habits of use and valuation, as well as the device"s integration into their personal, social and professional life were studied. The analysis intents to apply the 'Social Technographics Profile" by Bernoff (2010) to classify, by profile groups, the users of the actual Internet. Finally a reflexion of the reasons and limits of the theory, in this study, and also the relation to reality is presented. The Inter-coding reliability and validity shows the possibility of applying the instrument on wider samples in order to get a closer look to the uses and actual conceptions of the ubiquitous ICTs.
Resumo:
Les élevages d'animaux de rente hébergent de plus en plus de bêtes. Cette situation génère une accumulation de poussière organique, constituée de particules inertes et de microorganismes, issus de la nourriture, de la litière, des matières fécales, des pellicules de la peau, des poils, etc. L'activité des animaux et l'activité professionnelle favorisent une remise en suspension de cette poussière, qui peut se propager à l'extérieur. Ces émissions de particules organiques dans l'environnement soulèvent des inquiétudes pour la santé des riverains. Ces craintes sont légitimes, puisque les problèmes respiratoires, allergiques ou toxiques sont bien connus chez les travailleurs agricoles exposés à de fortes doses de poussières organiques. Un autre risque sanitaire lié aux élevages intensifs d'animaux est la dissémination de bactéries résistantes aux antibiotiques dans l'environnement avec, pour éventuelle conséquence, une transmission de ces souches aux personnes résidant à proximité. Cette problématique est bien connue dans les élevages de porcs fréquemment colonisés par des SARM (Staphylococcus aureus résistant à la méticilline), qui sont transmis aux éleveurs. Les deux études analysées ci-dessous ont investigué cette problématique de dissémination des particules organiques dans l'environnement et les conséquences sur la santé des riverains. La première a étudié le lien entre le fait de résider à proximité de fermes d'élevage d'animaux et la prévalence de maladies respiratoires. La deuxième a étudié le risque de colonisation nasale par des SARM dans une population de vétérans vivant à proximité d'élevages intensifs de porcs.