997 resultados para Layout flow diagram
Resumo:
Abstract Objective: To determine whether low-level laser therapy can prevent salivary hypofunction after radiotherapy and chemotherapy in head and neck cancer patients. Materials and Methods: We evaluated 23 head and neck cancer patients, of whom 13 received laser therapy and 10 received clinical care only. An InGaAlP laser was used intra-orally (at 660 nm and 40 mW) at a mean dose of 10.0 J/cm2 and extra-orally (at 780 nm and 15 mW) at a mean dose of 3.7 J/cm2, three times per week, on alternate days. Stimulated and unstimulated sialometry tests were performed before the first radiotherapy and chemotherapy sessions (N0) and at 30 days after the end of treatment (N30). Results: At N30, the mean salivary flow rates were significantly higher among the laser therapy patients than among the patients who received clinical care only, in the stimulated and unstimulated sialometry tests (p = 0.0131 and p = 0.0143, respectively). Conclusion: Low-level laser therapy, administered concomitantly with radiotherapy and chemotherapy, appears to mitigate treatment-induced salivary hypofunction in patients with head and neck cancer.
Resumo:
Postprint (published version)
Resumo:
This thesis gathers knowledge about ongoing high-temperature reactor projects around the world. Methods for calculating coolant flow and heat transfer inside a pebble-bed reactor core are also developed. The thesis begins with the introduction of high-temperature reactors including the current state of the technology. Process heat applications that could use the heat from a high-temperature reactor are also introduced. A suitable reactor design with data available in literature is selected for the calculation part of the thesis. Commercial computational fluid dynamics software Fluent is used for the calculations. The pebble-bed is approximated as a packed-bed, which causes sink terms to the momentum equations of the gas flowing through it. A position dependent value is used for the packing fraction. Two different models are used to calculate heat transfer. First a local thermal equilibrium is assumed between the gas and solid phases and a single energy equation is used. In the second approach, separate energy equations are used for the phases. Information about steady state flow behavior, pressure loss, and temperature distribution in the core is obtained as results of the calculations. The effect of inlet mass flow rate to pressure loss is also investigated. Data found in literature and the results correspond each other quite well, considered the amount of simplifications in the calculations. The models developed in this thesis can be used to solve coolant flow and heat transfer in a pebble-bed reactor, although additional development and model validation is needed for better accuracy and reliability.
Resumo:
This thesis is focused on process intensification. Several significant problems and applications of this theme are covered. Process intensification is nowadays one of the most popular trends in chemical engineering and attempts have been made to develop a general, systematic methodology for intensification. This seems, however, to be very difficult, because intensified processes are often based on creativity and novel ideas. Monolith reactors and microreactors are successful examples of process intensification. They are usually multichannel devices in which a proper feed technique is important for creating even fluid distribution into the channels. Two different feed techniques were tested for monoliths. In the first technique a shower method was implemented by means of perforated plates. The second technique was a dispersion method using static mixers. Both techniques offered stable operation and uniform fluid distribution. The dispersion method enabled a wider operational range in terms of liquid superficial velocity. Using dispersion method, a volumetric gas-liquid mass transfer coefficient of 2 s-1 was reached. Flow patterns play a significant role in terms of the mixing performance of micromixers. Although the geometry of a T-mixer is simple, channel configurations and dimensions had a clear effect on mixing efficiency. The flow in the microchannel was laminar, but the formation of vortices promoted mixing in micro T-mixers. The generation of vortices was dependent on the channel dimensions, configurations and flow rate. Microreactors offer a high ratio of surface area to volume. Surface forces and interactions between fluids and surfaces are, therefore, often dominant factors. In certain cases, the interactions can be effectively utilised. Different wetting properties of solid materials (PTFE and stainless steel) were applied in the separation of immiscible liquid phases. A micro-scale plate coalescer with hydrophilic and hydrophobic surfaces was used for the continuous separation of organic and aqueous phases. Complete phase separation occurred in less than 20 seconds, whereas the separation time by settling exceeded 30 min. Fluid flows can be also intensified in suitable conditions. By adding certain additives into turbulent fluid flow, it was possible to reduce friction (drag) by 40 %. Drag reduction decreases frictional pressure drop in pipelines which leads to remarkable energy savings and decreases the size or number of pumping facilities required, e.g., in oil transport pipes. Process intensification enables operation often under more optimal conditions. The consequent cost savings from reduced use of raw materials and reduced waste lead to greater economic benefits in processing.
Resumo:
There is an increasing reliance on computers to solve complex engineering problems. This is because computers, in addition to supporting the development and implementation of adequate and clear models, can especially minimize the financial support required. The ability of computers to perform complex calculations at high speed has enabled the creation of highly complex systems to model real-world phenomena. The complexity of the fluid dynamics problem makes it difficult or impossible to solve equations of an object in a flow exactly. Approximate solutions can be obtained by construction and measurement of prototypes placed in a flow, or by use of a numerical simulation. Since usage of prototypes can be prohibitively time-consuming and expensive, many have turned to simulations to provide insight during the engineering process. In this case the simulation setup and parameters can be altered much more easily than one could with a real-world experiment. The objective of this research work is to develop numerical models for different suspensions (fiber suspensions, blood flow through microvessels and branching geometries, and magnetic fluids), and also fluid flow through porous media. The models will have merit as a scientific tool and will also have practical application in industries. Most of the numerical simulations were done by the commercial software, Fluent, and user defined functions were added to apply a multiscale method and magnetic field. The results from simulation of fiber suspension can elucidate the physics behind the break up of a fiber floc, opening the possibility for developing a meaningful numerical model of the fiber flow. The simulation of blood movement from an arteriole through a venule via a capillary showed that the model based on VOF can successfully predict the deformation and flow of RBCs in an arteriole. Furthermore, the result corresponds to the experimental observation illustrates that the RBC is deformed during the movement. The concluding remarks presented, provide a correct methodology and a mathematical and numerical framework for the simulation of blood flows in branching. Analysis of ferrofluids simulations indicate that the magnetic Soret effect can be even higher than the conventional one and its strength depends on the strength of magnetic field, confirmed experimentally by Völker and Odenbach. It was also shown that when a magnetic field is perpendicular to the temperature gradient, there will be additional increase in the heat transfer compared to the cases where the magnetic field is parallel to the temperature gradient. In addition, the statistical evaluation (Taguchi technique) on magnetic fluids showed that the temperature and initial concentration of the magnetic phase exert the maximum and minimum contribution to the thermodiffusion, respectively. In the simulation of flow through porous media, dimensionless pressure drop was studied at different Reynolds numbers, based on pore permeability and interstitial fluid velocity. The obtained results agreed well with the correlation of Macdonald et al. (1979) for the range of actual flow Reynolds studied. Furthermore, calculated results for the dispersion coefficients in the cylinder geometry were found to be in agreement with those of Seymour and Callaghan.
Resumo:
Vaihdetehtaan tilauskannan lisääntyminen sekä jo ennestään maksimikapasiteetilla käyvä tuotanto ovat aiheuttaneet vaihdetehtaalle kapasiteetin lisäämisen tarpeen. Tuotannon kasvattamiseen pyritään laiteinvestointien avulla, joiden oletetaan lisäävän tehtaan osavalmistuksen kapasiteettia 50 prosentilla. Vuotuisten tuotantomäärien kasvaminen asettaa paineita vaihdetehtaan kokoonpanosoluun, jonka tulisi kyetä vastaamaan tuotantomäärien kasvuun. Tämän diplomityön tarkoituksena on kartoittaa kokoonpanosolun potentiaaliset kehityskohteet, joiden pohjalta luodaan systemaattinen toimintamalli kokoonpanosolun tuottavuuden kehittämiseksi. Työn keskeisimpinä tavoitteina ovat materiaalivirran- ja välivarastoinninhallinnan kehittäminen sekä tuotteiden kokoonpanon läpimenoajan lyhentäminen. Työn tuloksena on tarkoitus luoda toteutuskelpoinen kehityssuunnitelma, joka sisältää suunnitelmat kokoonpanotyön vaiheistuksesta, kokoonpanosolun layoutista sekä suunnitelman välivarastoinnin kehittämisestä. Lisäksi kehitystyöhön liittyvät olennaisesti kokoonpanosoluun suoritettavat investoinnit ja niiden kannattavuuden arviointi sekä tuottavuuden seurantaan liittyvän mittariston laadinta.
Resumo:
Knowledge flow from the customers is an important resource for a company and therefore it should engage its customers in knowledge co-creation. Through providing a virtual customer environment (VCE) as knowledge creation and sharing platform a company can obtain this type of knowledge, which is important for strategic purposes. In the VCE the members of the virtual customer community (VCC) create and share knowledge individually and collectively in diverse roles, utilizing many interaction facilities. Creating a functional VCE is not either easy or quick task and a company needs to analyze various issues carefully. Providing such a VCE in which customers want to share their experiences and insights is however worth of considering, since it brings many benefits for the company. In this research the main benefit is stated as the supportative role of the VCE in the better management of the knowledge flow from the customers.
Resumo:
As a result of the growing interest in studying employee well-being as a complex process that portrays high levels of within-individual variability and evolves over time, this present study considers the experience of flow in the workplace from a nonlinear dynamical systems approach. Our goal is to offer new ways to move the study of employee well-being beyond linear approaches. With nonlinear dynamical systems theory as the backdrop, we conducted a longitudinal study using the experience sampling method and qualitative semi-structured interviews for data collection; 6981 registers of data were collected from a sample of 60 employees. The obtained time series were analyzed using various techniques derived from the nonlinear dynamical systems theory (i.e., recurrence analysis and surrogate data) and multiple correspondence analyses. The results revealed the following: 1) flow in the workplace presents a high degree of within-individual variability; this variability is characterized as chaotic for most of the cases (75%); 2) high levels of flow are associated with chaos; and 3) different dimensions of the flow experience (e.g., merging of action and awareness) as well as individual (e.g., age) and job characteristics (e.g., job tenure) are associated with the emergence of different dynamic patterns (chaotic, linear and random).
Resumo:
The spectrophotometric determination of Cd(II) using a flow injection system provided with a solid-phase reactor for cadmium preconcentration and on-line reagent preparation, is described. It is based on the formation of a dithizone-Cd complex in basic medium. The calibration curve is linear between 6 and 300 µg L-1 Cd(II), with a detection limit of 5.4 µg L-1, an RSD of 3.7% (10 replicates in duplicate) and a sample frequency of 11.4 h-1. The proposed method was satisfactorily applied to the determination of Cd(II) in surface, well and drinking waters.
Resumo:
A flow system coupled to a tungsten coil atomizer in an atomic absorption spectrometer (TCA-AAS) was developed for As(III) determination in waters, by extraction with sodium diethyldithiocarbamate (NaDDTC) as complexing agent, and by sorption of the As(III)-DDTC complex in a micro-column filled with 5 mg C18 reversed phase (10 µL dry sorbent), followed by elution with ethanol. A complete pre-concentration/elution cycle took 208 s, with 30 s sample load time (1.7 mL) and 4 s elution time (71 µL). The interface and software for the synchronous control of two peristaltic pumps (RUN/ STOP), an autosampler arm, seven solenoid valves, one injection valve, the electrothermal atomizer and the spectrometer Read function were constructed. The system was characterized and validated by analytical recovery studies performed both in synthetic solutions and in natural waters. Using a 30 s pre-concentration period, the working curve was linear between 0.25 and 6.0 µg L-1 (r = 0.9976), the retention efficiency was 94±1% (6.0 µg L-1), and the pre-concentration coefficient was 28.9. The characteristic mass was 58 pg, the mean repeatability (expressed as the variation coefficient) was 3.4% (n=5), the detection limit was 0.058 µg L-1 (4.1 pg in 71 µL of eluate injected into the coil), and the mean analytical recovery in natural waters was 92.6 ± 9.5 % (n=15). The procedure is simple, economic, less prone to sample loss and contamination and the useful lifetime of the micro-column was between 200-300 pre-concentration cycles.
Resumo:
Biofilm communities are exposed to long periods of desiccation in temporary streams. We investigated how water flow intermittency affected the bacterial community structure colonizing three different streambed compartments in a Mediterranean stream. Massive parallel sequencing revealed different bacterial communities in biofilms from sand sediments and cobbles. Bacterial communities were similar (62% of shared operational taxonomic units) in the epipsammic and hyporheic biofilms, and more diverse than those in the epilithic biofilms. The non-flow phase caused a decrease of bacterial diversity in the biofilms, when communities included only bacterial taxa assumed to be adapted to water stress. The most sensitive bacterial communities to flow intermittency were in the epilithic, where the exposure to physical stress was the highest. In sand sediments a wide group of bacterial taxa was tolerant to desiccation. During non-flow the proliferation of opportunistic taxa in the superficial compartments evidenced the biological link with the terrestrial environment. Bacterial communities better tolerate rewetting than desiccation, since a major number of taxa tolerant to rewetting occurred in all biofilms. Overall, bacterial communities in sandy compartments showed higher resistance to flow intermittency than those in epilithic biofilms
Resumo:
The modern stopped-flow reaction analyzer has shown high efficiency and flexibility, which provides outstanding sample economy with a dead-time of less than 1 ms. However the cost of the equipment imposes a serious restriction to many Brazilian scientists and teachers. In this work we describe the construction of a low-cost stopped-flow system coupled to a UV-Vis spectrophotometer. The performance of the system was checked by monitoring the kinetics of two reactions: the fading of phenolphthalein in aqueous alkaline solution and the chlorophyll a demetallation in acid medium. The apparatus showed reasonable efficiency with a dead-time of 0.3 to 0.5 s. The very good results obtained in these two illustrative processes show that the system is satisfactory for determining rate constants with mean reaction times ranging from seconds to minutes.
Resumo:
Rivers are among the most diverse and threatened ecosystems on Earth, as they are impacted by increasing human pressures. Because rivers provide essential goods and services, conservation of these ecosystems is a requisite for sustainable development. Therefore, we must seek ways to conserve healthy rivers and to restore degraded ones
Resumo:
Com a resultat de les politiques i estratègies de col·laboració entre la universitat de Vic i de l’hospital i de la voluntat de realitzar activitats formatives conjuntes , s’estableix un línia de treball orientada a l’estudi i anàlisi de la situació logística interna actual del laboratori d’anàlisis clíniques de l’Hospital General de Vic. El treball es centra en el procés intern del laboratori i l’abast de l’estudi es troba limitat a les àrees especifiques d’hematologia i coagulació i bioquí… [+]mica. D’aquestes dues àrees el treball realitza un estudi exhaustiu del seu procés intern, identifica les seves activitats i la seva metodologia de treball amb l’objectiu d’elaborar el Value Stream Map de cadascuna de les àrees. Les àrees de Microbiologia, Banc de Sang i Urgències resten fora d’aquest estudi exhaustiu tot i que són presents en el treball per la inevitable interacció que tenen en la globalitat del procés. El treball es centra bàsicament en els processos automatitzats tot i que els processos que es duen a terme en el laboratori són tant automatitzats com manuals. També es limita al sistema productiu intern del laboratori tot i la interacció que té aquest sistema intern amb altres centres productius del sistema com ara són els centres d’atenció primària, els diversos hospitals i centres d’atenció sociosanitària. El laboratori es troba immers en el moment de l’elaboració d’aquest treball en un situació de canvi i millora del seus processos interns que consisteixen principalment en la substitució de part la maquinària actual que obliguen a la definició d’un nou layout i d’una nova distribució de la producció a cada màquina. A nivell extern també s’estan produint millores en el sistema informàtic de gestió que afecten a part del seu procés. L’objectiu del treball és donar visibilitat total al procés de logística interna actual del laboratori, identificant clarament com són i quina seqüència tenen els processos logístics interns i els mètodes de treball actuals, tant de recursos màquina com recursos persona, per poder identificar sota una perspectiva de generació de valor, aquells punts concrets de la logística interna que poden ser millorats en quant a eficiència i productivitat amb l’objectiu que un cop identificats es puguin emprendre accions i/o projectes de millora. El treball finalitza amb un anàlisis final del procés logística interna des d’una òptica Lean. Per fer-ho, identifica aquelles activitats que no aporten valor al procés o MUDA i les classifica en set categories i es realitzen diverses propostes de millora com són la implantació d’un flux continu , anivellat i basat en un concepte pull , identifica activitats que poden ser estandarditzades i/o simplificades i proposa modificacions en les infraestructures físiques per donar major visibilitat al procés. L’aspecte humà del procés es planteja des d’un punt de vist de metodologia, formació, comunicació i aplicació de les 5S.