946 resultados para Kramers equation
Resumo:
The effective mass Schrodinger equation of a QD of parallelepipedic shape with a square potential well is solved by diagonalizing the exact Hamiltonian matrix developed in a basis of separation-of-variables wavefunctions. The expected below bandgap bound states are found not to differ very much from the former approximate calculations. In addition, the presence of bound states within the conduction band is confirmed. Furthermore, filamentary states bounded in two dimensions and extended in one dimension and layered states with only one dimension bounded, all within the conduction band which are similar to those originated in quantum wires and quantum wells coexist with the ordinary continuum spectrum of plane waves. All these subtleties are absent in spherically shaped quantum dots, often used for modeling.
Resumo:
Desde el año 2004 el código ARWEN ha sido utilizado con éxito para simular y diseñar experimentos relacionados con blancos para fusión por confinamiento inercial [146], astrofísica de laboratorio [145], plasmas como amplificadores de láseres de rayos X [107] o plasmas creados por láser para la medición de espectros de transmisión. Para la realización de estas simulaciones es necesario, además de métodos de alto orden precisos y que presenten buenas propiedades conservativas, conocer ciertas propiedades de los plasmas. En el caso de la fluidodinámica y la conducción electrónica necesitaremos conocer la ecuación de estado [94, 49, 36], y para el transporte de la radiación será preciso disponer de los datos de absorción y emisión [104, 95, 40]. Hasta el año 2009 ARWEN dependía de códigos externos para la generación de estas tablas de opacidad, careciendo de control sobre los métodos empleados para su generación. Además estos códigos asumían equilibrio local termodinámico (LTE), limitando su validez a rangos de alta densidad y baja temperatura. En el marco de esta tesis se ha desarrollado el código BIGBART para la generación de tablas detalladas de opacidad y emisividad para su uso en el módulo de transporte de radiación. De esta forma el grupo dispondrá de su propia herramienta de generación de propiedades radiativas. El código desarrollado es capaz de tratar plasmas en estado fuera de equilibrio (non-LTE) mediante el modelo colisional-radiativo, extendiendo así el rango de validez de las tablas generadas. El trabajo desarrollado para implementar un código LTE/non-LTE estacionario es el siguiente Cálculo de estructura y datos atómicos. Se ha acoplado en código FAC a BIGBART, incorporando la capacidad para generar potenciales atómicos para una configuración y el cálculo de funciones de onda de electrones en orbitales ligados y libres. Aproximaciones y métodos para la obtención de tasas y secciones eficaces de procesos. Se han incluido y programado los modelos implementados en FAC para el cálculo de secciones eficaces de fotoionización, y tasas de decaimiento de emisión espontánea y autoionización. Además se ha incluido el modelo Plane-Wave Born (PWBA) para el cálculo de las secciones eficaces de ionización y excitación colisional. Modelos para la obtención de la distribución de estados iónicos dentro del plasma. Se ha programado un solver LTE basado en la ecuación de Saha-Boltzmann con efectos de ionización por presión debida a los iones adyacentes. También se ha implementado un modelo non-LTE colisionalradiativo para la resolución del sistema de ecuaciones que nos permite obtener la densidad de estados iónicos fuera de equilibrio. Modelo non-LTE RADIOM. Se ha implementado el modelo RADIOM para aproximar efectos de no-equilibrio mediante cálculos LTE a una temperatura equivalente, menor o igual que la temperatura electrónica real. Cálculo de las propiedades espectrales de absorción y emisión. Se han implementado los modelos para el cálculo de los perfiles espectrales de absorción y emisión para procesos entre niveles ligados, ligado-libre y librelibre. Aprovechando el trabajo realizado en este sentido, durante el transcurso de esta tesis se amplió el código BIGBART para tratar problemas con dependencia temporal. La extensión para tratar este tipo de problemas se orientó a la simulación numérica de la interacción de láseres ultra intensos en el rango XUV/rayos X. Para ello, además de adaptar el modelo non-LTE colisionalradiativo se incluyeron procesos adicionales asociados a la interacción de la materia con fotones altamente energéticos. También se han incluido modelos para el cálculo de las propiedades ópticas, y por ende las propiedades dieléctricas de la materia irradiada, de gran interés en algunas aplicaciones novedosas de estos láseres intensos. Debido a la naturaleza fuertemente fuera de equilibrio en la interacción de fotones de alta energía con la materia, se incluyó el tratamiento de la distribución de electrones libres fuera de equilibrio en la aproximación de Fokker-Planck, tanto para condiciones degeneradas como no degeneradas. El trabajo desarrollado en el código non-LTE con dependencia temporal es el siguiente Procesos asociados a láseres intensos XUV/rayos X. Se ha implementado el cálculo de procesos radiativos estimulados de absorción y emisión por el láser. También se han incluido procesos asociados a la creación de vacantes en capas internas electrónicas (Shake), además de doble autoionización y doble fotoionización. Cálculo de propiedades ópticas y dieléctricas en blancos sólidos. Se ha implementado un modelo para la absorción por bremsstrahlung inverso en blancos en estado sólido. Con el coeficiente de extinción debido a procesos de fotoabsorción resonante, fotoionización y bremsstrahlung inverso se obtiene el ´ındice de refracción mediante la relación de Kronig-Kramers. Electrones fuera de equilibrio. Se ha tratado la evolución de la distribución de electrones, cuando no está justificado asumir que es Maxwelliana o de Fermi-Dirac, mediante la aproximación de Fokker-Planck para la colisión entre electrones libres. En la resolución de la ecuación de Fokker-Planck se han incluido los procesos inelásticos por colisiones con iones y términos fuente por interacción con el láser y otros procesos. ABSTRACT Since 2004 the ARWEN code has been successfully used to simulate and design targets for inertial confinement fusion experiments [146], laboratory astrophysics [145], plasmas as X-ray lasers amplifiers [107] or laser created plasmas for measuring transmission spectra. To perform these simulations it is necessary, in addition to high order precise methods with good conservative properties, to know certain properties of plasmas. For fluid dynamic and electronic conduction we need to know the equation of state [94, 49, 36], and for radiation transport it will be necessary to have the data of the absorption and emission [104, 95, 40]. Until 2009 ARWEN depended on external codes to generate these opacity tables, lacking of control over the methods used for their generation. Besides, these codes assumed local thermodynamic equilibrium (LTE), limiting their validity ranges to high densities and low temperatures. As part of this thesis it has been developed the BIGBART code for generating detailed opacity and emissivity tables for use in the radiation transport module. This group will have its own tool for the generation of radiative properties. The developed code is capable of treating plasmas out of equilibrium (non-LTE) by means of a collisional-radiative model, extending the range of validity of the generated tables. The work to implement an LTE/non-LTE steady-state code is as follows Calculation of structure and atomic data. the FAC code was coupled to BIGBART, incorporating the ability to generate atomic potentials for calculating configuration wave functions for bound and free electrons. Approaches and methods for obtaining cross sections and processes rates. We have included and reprogrammed in Fortran the models implemented in FAC for calculation of photoionization cross sections and decay rates of spontaneous emission and autoionization. We also included the Plane- Wave Born (PWBA) model to calculate the cross sections of ionization and collisional excitation. Models for the obtention of the distribution of ionic states within the plasma. We programmed a LTE solver based on the Saha-Boltzmann equation with pressure ionization effects due to adjacent ions. It has also been implemented a non-LTE collisional-radiative model for solving the system of equations that allows us to obtain the density of ionic states out of equilibrium. Non-LTE RADIOM model. We have implemented the non-LTE RADIOM model to approximate non-equilibrium effects with LTE data at an equivalent temperature, lower or equal to the actual electronic temperature. Calculation of the spectral absorption and emission properties. Models have been implemented for the calculation of the spectral profiles of absorption and emission processes between bound levels, free-bound and free-free. Taking advantage of the work done in this direction throughout the course of this thesis the code BIGBART was extended to treat time-dependent problems. The extension to treat such problems is oriented to the numerical simulation of the interaction of ultra intense lasers in the XUV/X-ray range. For this range, in addition to adapting the non-LTE collisional-radiative model, additional processes associated with the interaction of matter with high energy photons. We also included models for calculation of the optical properties, and therefore the dielectric properties of the irradiated material, of great interest in some novel applications of these intense lasers. Due to the strong non-equilibrium nature of the interaction of high energy photons with matter, we included the treatment of the distribution of free electrons out of equilibrium in the Fokker-Planck approximation for both degenerate and non-degenerate conditions. The work in the non-LTE time-dependent code is as follows Processes associated with intense XUV/X-ray lasers. We have implemented the calculation of stimulated radiative processes in absorption and emission. Also we included processes associated with the creation of electronic vacancies in inner shells (Shake), double autoionization and double photoionization. Calculation of optical and dielectric properties in solid targets. We have implemented a model for inverse bremsstrahlung absorption in solid targets. With the extinction coefficient from resonant photoabsorption, photoionization and inverse bremsstrahlung the refractive index is obtained by the Kramers-Kronig relation. Electrons out of equilibrium. We treat the evolution of the electron distribution, when it is not justified to assume a Maxwellian or Fermi-Dirac distribution, by the Fokker-Planck approximation for collisions between electrons. When solving the Fokker-Planck equation we included inelastic collision processes with ions and source terms by interaction with the laser and other processes.
Resumo:
En el presente artículo se muestran las ventajas de la programación en paralelo resolviendo numéricamente la ecuación del calor en dos dimensiones a través del método de diferencias finitas explícito centrado en el espacio FTCS. De las conclusiones de este trabajo se pone de manifiesto la importancia de la programación en paralelo para tratar problemas grandes, en los que se requiere un elevado número de cálculos, para los cuales la programación secuencial resulta impracticable por el elevado tiempo de ejecución. En la primera sección se describe brevemente los conceptos básicos de programación en paralelo. Seguidamente se resume el método de diferencias finitas explícito centrado en el espacio FTCS aplicado a la ecuación parabólica del calor. Seguidamente se describe el problema de condiciones de contorno y valores iniciales específico al que se va a aplicar el método de diferencias finitas FTCS, proporcionando pseudocódigos de una implementación secuencial y dos implementaciones en paralelo. Finalmente tras la discusión de los resultados se presentan algunas conclusiones. In this paper the advantages of parallel computing are shown by solving the heat conduction equation in two dimensions with the forward in time central in space (FTCS) finite difference method. Two different levels of parallelization are consider and compared with traditional serial procedures. We show in this work the importance of parallel computing when dealing with large problems that are impractical or impossible to solve them with a serial computing procedure. In the first section a summary of parallel computing approach is presented. Subsequently, the forward in time central in space (FTCS) finite difference method for the heat conduction equation is outline, describing how the heat flow equation is derived in two dimensions and the particularities of the finite difference numerical technique considered. Then, a specific initial boundary value problem is solved by the FTCS finite difference method and serial and parallel pseudo codes are provided. Finally after results are discussed some conclusions are presented.
Resumo:
A general fractional porous medium equation
Resumo:
In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185-1191, 2010) and Elaskar et al. (Physica A. 390:2759-2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation {Mathematical expression}, where {Mathematical expression} is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases {Mathematical expression} can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data
Resumo:
We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a perturbed nonlinear Schrödinger equation that describes the evolution of the envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-consistent framework for the description of the plasma response in the presence of localized electromagnetic field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrödinger equation with a focusing nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations in the initial phase or amplitude
Resumo:
The Monge–Ampère (MA) equation arising in illumination design is highly nonlinear so that the convergence of the MA method is strongly determined by the initial design. We address the initial design of the MA method in this paper with the L2 Monge-Kantorovich (LMK) theory, and introduce an efficient approach for finding the optimal mapping of the LMK problem. Three examples, including the beam shaping of collimated beam and point light source, are given to illustrate the potential benefits of the LMK theory in the initial design. The results show the MA method converges more stably and faster with the application of the LMK theory in the initial design.
Resumo:
The Monge-Ampére equation method could be the most advanced point source algorithm of freeform optics design. This paper introduces this method, and outlines two key issues that should be tackles to improve this method.
Resumo:
We characterize the chaos in a fractional Duffing’s equation computing the Lyapunov exponents and the dimension of the strange attractor in the effective phase space of the system. We develop a specific analytical method to estimate all Lyapunov exponents and check the results with the fiduciary orbit technique and a time series estimation method.
Resumo:
We prove global existence and uniqueness of strong solutions to the logarithmic porous medium type equation with fractional diffusion ?tu + (?)1/2 log(1 + u) = 0, posed for x ? R, with nonnegative initial data in some function space of LlogL type. The solutions are shown to become bounded and C? smooth in (x, t) for all positive times. We also reformulate this equation as a transport equation with nonlocal velocity and critical viscosity, a topic of current relevance. Interesting functional inequalities are involved.
Resumo:
An engineering modification of blade element/momentum theory is applied to describe the vertical autorotation of helicopter rotors. A full non-linear aerodynamic model is considered for the airfoils, taking into account the dependence of lift and drag coefficients on both the angle of attack and the Reynolds number. The proposed model, which has been validated in previous work, has allowed the identification of different autorotation modes, which depend on the descent velocity and the twist of the rotor blades. These modes present different radial distributions of driven and driving blade regions, as well as different radial upwash/downwash patterns. The number of blade sections with zero tangential force, the existence of a downwash region in the rotor disk, the stability of the autorotation state, and the overall rotor autorotation efficiency, are all analyzed in terms of the flight velocity and the characteristics of the rotor. It is shown that, in vertical autorotation, larger blade twist leads to smaller values of descent velocity for a given thrust generated by the rotor in the autorotational state.
Resumo:
Schrödinger’s equation of a three-body system is a linear partial differential equation (PDE) defined on the 9-dimensional configuration space, ℝ9, naturally equipped with Jacobi’s kinematic metric and with translational and rotational symmetries. The natural invariance of Schrödinger’s equation with respect to the translational symmetry enables us to reduce the configuration space to that of a 6-dimensional one, while that of the rotational symmetry provides the quantum mechanical version of angular momentum conservation. However, the problem of maximizing the use of rotational invariance so as to enable us to reduce Schrödinger’s equation to corresponding PDEs solely defined on triangular parameters—i.e., at the level of ℝ6/SO(3)—has never been adequately treated. This article describes the results on the orbital geometry and the harmonic analysis of (SO(3),ℝ6) which enable us to obtain such a reduction of Schrödinger’s equation of three-body systems to PDEs solely defined on triangular parameters.
Resumo:
An exact treatment of adsorption from a one-dimensional lattice gas is used to eliminate and correct a well-known inconsistency in the Brunauer–Emmett–Teller (B.E.T.) equation—namely, Gibbs excess adsorption is not taken into account and the Gibbs integral diverges at the transition point. However, neither model should be considered realistic for experimental adsorption systems.
Resumo:
The equation ∂tu = u∂xx2u − (c − 1)(∂xu)2 is known in literature as a qualitative mathematical model of some biological phenomena. Here this equation is derived as a model of the groundwater flow in a water-absorbing fissurized porous rock; therefore, we refer to this equation as a filtration-absorption equation. A family of self-similar solutions to this equation is constructed. Numerical investigation of the evolution of non-self-similar solutions to the Cauchy problems having compactly supported initial conditions is performed. Numerical experiments indicate that the self-similar solutions obtained represent intermediate asymptotics of a wider class of solutions when the influence of details of the initial conditions disappears but the solution is still far from the ultimate state: identical zero. An open problem caused by the nonuniqueness of the solution of the Cauchy problem is discussed.
Resumo:
Electron paramagnetic resonance (EPR) spectroscopy at 94 GHz is used to study the dark-stable tyrosine radical Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{D}^{{\bullet}}}}\end{equation*}\end{document} in single crystals of photosystem II core complexes (cc) isolated from the thermophilic cyanobacterium Synechococcus elongatus. These complexes contain at least 17 subunits, including the water-oxidizing complex (WOC), and 32 chlorophyll a molecules/PS II; they are active in light-induced electron transfer and water oxidation. The crystals belong to the orthorhombic space group P212121, with four PS II dimers per unit cell. High-frequency EPR is used for enhancing the sensitivity of experiments performed on small single crystals as well as for increasing the spectral resolution of the g tensor components and of the different crystal sites. Magnitude and orientation of the g tensor of Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{D}^{{\bullet}}}}\end{equation*}\end{document} and related information on several proton hyperfine tensors are deduced from analysis of angular-dependent EPR spectra. The precise orientation of tyrosine Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{D}^{{\bullet}}}}\end{equation*}\end{document} in PS II is obtained as a first step in the EPR characterization of paramagnetic species in these single crystals.