985 resultados para Injured Patients
Resumo:
Traumatic insults to the central nervous system are frequently followed by profound and irreversible neuronal loss as well as the inability of the damaged neurons to regenerate. One of the major therapeutic challenges is to increase the amount of surviving neurons after trauma. Thus it is crucial to understand how injury affects neuronal responses and which conditions are optimal for survival to prevent neuronal loss. During development neuronal survival is thought to be dependent on the competition for the availability of survival-promoting molecules called neurotrophic factors. Much less is known on the survival mechanisms of mature neurons under traumatic conditions. Increasing amount of evidence points towards the possibility that after injury neuronal responses might aquire some developmental characteristics. One of the important examples is the change in the responses to the neurotransmitter GABA: it is inhibitory in the intact mature neurons, but can induce excitation during development and after trauma. An important step in the maturation of GABAergic transmission in the CNS is the developmental shift in the action of GABAA receptor from depolarization in immature neurons to hyperpolarization in mature neurons. GABAA-mediated responses are tightly linked to the homeostasis of the chloride anion (Cl-), which in neurons is mainly regulated by Na+-K+-2Cl- cotransporter NKCC1 and K+-Cl- cotransporter KCC2. Trauma-induced functional downregulation of KCC2 promotes a shift from hyperpolarizing GABAA-mediated responses to depolarizing. Other important consequences of neuronal trauma are the emergence of dependency of central neurons on brain-derived neuro¬trophic factor (BDNF) for survival, as well as the upregulation of neurotrophin receptor p75NTR. Our aim was to answer the question whether these post-traumatic events are interrelated, and whether the regulation of BDNF and KCC2 expression is different under traumatic conditions and in intact neurons. To study responses of injured mature central neurons, we used an in vitro and in vivo axotomy models. For in vitro studies, we lesioned organotypic hippocampal slices between CA3 and CA1 regions, which resulted in selective axotomy of the CA3 neurons and denervation of the CA1 neurons. Some experiments were repeated in vivo by lesioning the neurons of the corticospinal tract at the internal capsule level, or by lesioning spinal motoneurons at the ventral root. We show that intact mature neurons do not require BDNF for survival, whereas in axotomized neurons apoptosis is induced upon BDNF deprivation. We further show that post-traumatic dependency on BDNF is mediated by injury-induced upregulation of p75NTR. Post-traumatic increase in p75NTR is induced by GABAA-mediated depolarization, consequent opening of voltage-gated Ca2+ channels, and the activation of Rho kinase ROCK. Thus, post-traumatic KCC2 downregulation leads to the dependency on BDNF through the induction of p75NTR upregulation. Neurons that survive after axotomy over longer period of time lose BDNF dependency and regain normal KCC2 levels. This phenomenon is promoted by BDNF itself, since after axotomy contrary to normal conditions KCC2 is upregulated by BDNF. The developmentally important thyroid hormone thyroxin regulates BDNF expression during development. We show that in mature intact neurons thyroxin downregulates BDNF, whereas after axotomy thyroxin upregulates BDNF. The elevation of BDNF expression by thyroxin promoted survival of injured neurons. In addition, thyroxin also enhanced axonal regeneration and promoted the regaining of normal levels of KCC2. Thus we show that this hormone acts at several levels on the axotomy-initiated chain of events described in the present work, and could be a potential therapeutic agent for the injured neurons. We have also characterized a previously unknown downregulatory interaction between thyroxin and KCC2 in intact neurons. In conclusion, we identified several important interactions at the neurotrophin-protein and hormone-neurotrophin level that acquire immature-like characteristics after axotomy and elucidated an important part of the mechanism by which axotomy leads to the requirement of BDNF trophic support. Based on these findings, we propose a new potential therapeutic strategy where developmentally crucial agents could be used to enhance survival and regeneration of axotomized mature central neurons.
Identification and Epidemiological Typing of Campylobacter strains isolated from Patients in Finland
Resumo:
C. jejuni constitutes the majority of Campylobacter strains isolated from patients in Finland, and C. coli strains are also reported. To improve the species identification, a combination of phenotype- and genotype-based methods was applied. Standardising the cell suspension turbidity in the hippurate hydrolysis test enabled the reliable identification of hippurate-positive Campylobacter strains as C. jejuni. The detection of species-specific genes by PCR showed that about 30% of the hippurate-negative strains were C. jejuni. Three typing methods, serotyping, PCR-RFLP analysis of LOS biosynthesis genes and pulsed-field gel electrophoresis (PFGE) were evaluated as epidemiological typing tools for C. jejuni. The high number of non-typeable strains lowered the discriminatory ability of serotyping. PCR-RFLP typing offered high discrimination for both serotypeable and non-typeable strains, but the correlation between serotypes and RFLP-types was not high enough to enable its use for molecular serotyping of non-typeable strains. PFGE was a highly discriminative typing method. Although the use of two restriction enzymes generally increases the discriminatory ability, KpnI alone offered almost as high discrimination as the use of SmaI and KpnI. The characteristic seasonal distribution of Campylobacter infections with a peak in summer and low incidence in winter was mainly due to domestically acquired infections. Of the C. jejuni strains, 41% were of domestic origin compared to only 17% of the C. coli strains. Serotypes Pen 12, Pen 6,7 and Pen 27 were significantly associated with domestic C. jejuni infections, Pen 1,44, Pen 3 and Pen 37 with travel-related infections. Pen 2 and Pen 4-complex were common both in domestic and travel-related infections. Serotype Pen 2 was less common among patients 60 years or older than in younger patients, more prevalent in Western Finland than in other parts of the country and more prevalent than other serotypes in winter. The source of Pen 2 infections may be related to cattle, since Pen 2 is the most common serotype in isolates from Finnish cattle. PFGE subtypes among isolates from patients and chickens during the summer 2003 and from cattle during the whole year were compared. The analysis of indistinguishable SmaI/KpnI subtypes suggested that up to 31% of the human infections may have been mediated by chickens and 19% by cattle. Human strains isolated during two one-year sampling periods were studied by PFGE. Of the domestic strains, 69% belonged to SmaI subtypes found during both sampling periods. Four SmaI subtypes accounted for 45% of the domestic strains, further typing of these subtypes by KpnI revealed six temporally persistent SmaI/KpnI subtypes. They were only occasionally identified in travel-related strains, and therefore, can be considered to be national subtypes. Each subtype was associated with a serotype: Pen 2, Pen 12, Pen 27, Pen 4-complex, Pen 41, and Pen 57. Five of these subtypes were identified in cattle (S5/K27, S7/K1, S7/K2, S7/K5 and S64/K19), and two in chickens (S7/K1 and S64/K19) with a temporal association with human infections in 2003. Cattle are more likely potential sources of these persistent subtypes, since long-term excretion of Campylobacter strains by cattle has been reported.
Resumo:
Background: Molecular chaperones have been shown to be important in the growth of the malaria parasite Plasmodium falciparum and inhibition of chaperone function by pharmacological agents has been shown to abrogate parasite growth. A recent study has demonstrated that clinical isolates of the parasite have distinct physiological states, one of which resembles environmental stress response showing up-regulation of specific molecular chaperones. Methods: Chaperone networks operational in the distinct physiological clusters in clinical malaria parasites were constructed using cytoscape by utilizing their clinical expression profiles. Results: Molecular chaperones show distinct profiles in the previously defined physiologically distinct states. Further, expression profiles of the chaperones from different cellular compartments correlate with specific patient clusters. While cluster 1 parasites, representing a starvation response, show up-regulation of organellar chaperones, cluster 2 parasites, which resemble active growth based on glycolysis, show up-regulation of cytoplasmic chaperones. Interestingly, cytoplasmic Hsp90 and its co-chaperones, previously implicated as drug targets in malaria, cluster in the same group. Detailed analysis of chaperone expression in the patient cluster 2 reveals up-regulation of the entire Hsp90-dependent pro-survival circuitries. In addition, cluster 2 also shows up-regulation of Plasmodium export element (PEXEL)-containing Hsp40s thought to have regulatory and host remodeling roles in the infected erythrocyte. Conclusion: In all, this study demonstrates an intimate involvement of parasite-encoded chaperones, PfHsp90 in particular, in defining pathogenesis of malaria.
Resumo:
The presence of DNA-specific IgG4 antibodies was demonstrated in the sera of patients with systemic lupus erythematosus (SLE) by a microtiter solid-phase radioimmunoassay. A patient with distal inter-phalangeal swelling and extensive ulcers in the oral cavity, seronegative for anti-DNA antibodies of the IgG isotype, was found to have anti-DNA autoantibodies exclusively of the IgG4 subclass. These autoantibodies directed against the dsDNA conformation cross-reacted with chondroitin sulfate, dermatan sulfate and heparin.
Resumo:
The main purpose of revascularization procedures for critical limb ischaemia (CLI) is to preserve the leg and sustain the patient s ambulatory status. Other goals are ischaemic pain relief and healing of ischaemic ulcers. Patients with CLI are usually old and have several comorbidities affecting the outcome. Revascularization for CLI is meaningless unless both life and limb are preserved. Therefore, the knowledge of both patient- and bypass-related risk factors is of paramount importance in clinical decision-making, patient selection and resource allocation. The aim of this study was to identify patient- and graft-related predictors of impaired outcome after infrainguinal bypass for CLI. The purpose was to assess the outcome of high-risk patients undergoing infrainguinal bypass and to evaluate the usefulness of specific risk scoring methods. The results of bypasses in the absence of optimal vein graft material were also evaluated, and the feasibility of the new method of scaffolding suboptimal vein grafts was assessed. The results of this study showed that renal insufficiency - not only renal failure but also moderate impairment in renal function - seems to be a significant risk factor for both limb loss and death after infrainguinal bypass in patients with CLI. Low estimated GFR (PIENEMPI KUIN 30 ml/min/1.73 m2) is a strong independent marker of poor prognosis. Furthermore, estimated GFR is a more accurate predictor of survival and leg salvage after infrainguinal bypass in CLI patients than serum creatinine level alone. We also found out that the life expectancy of octogenarians with CLI is short. In this patient group endovascular revascularization is associated with a better outcome than bypass in terms of survival, leg salvage and amputation-free survival especially in presence of coronary artery disease. This study was the first one to demonstrate that Finnvasc and modified Prevent III risk scoring methods both predict the long-term outcome of patients undergoing both surgical and endovascular infrainguinal revascularization for CLI. Both risk scoring methods are easy to use and might be helpful in clinical practice as an aid in preoperative patient selection and decision-making. Similarly than in previous studies, we found out that a single-segment great saphenous vein graft is superior to any other autologous vein graft in terms of mid-term patency and leg salvage. However, if optimal vein graft is lacking, arm vein conduits are superior to prosthetic grafts especially in infrapopliteal bypasses for CLI. We studied also the new method of scaffolding suboptimal quality vein grafts and found out that this method may enable the use of vein grafts of compromised quality otherwise unsuitable for bypass grafting. The remarkable finding was that patients with the combination of high operative risk due to severe comorbidities and risk graft have extremely poor survival, suggesting that only relatively fit patients should undergo complex bypasses with risk grafts. The results of this study can be used in clinical practice as an aid in preoperative patient selection and decision-making. In the future, the need of vascular surgery will increase significantly as the elderly and diabetic population increases, which emphasises the importance of focusing on those patients that will gain benefit from infrainguinal bypass. Therefore, the individual risk of the patient, ambulatory status, outcome expectations, the risk of bypass procedure as well as technical factors such as the suitability of outflow anatomy and the available vein material should all be assessed and taken into consideration when deciding on the best revascularization strategy.
Resumo:
The proportion of patients over 75 years of age, receiving all different types of healthcare, is constantly increasing. The elderly undergo surgery and anaesthetic procedures more often than middle-aged patients. Poor pain management in the elderly is still an issue. Although the elderly consumes the greatest proportion of prescribed medicines in Western Europe, most clinical pharmacological studies have been performed in healthy volunteers or middle-aged patients. The aim of this study was to investigate pain measurement and management in cognitively impaired patients in long term hospital care and in cognitively normal elderly patients after cardiac surgery. This thesis incorporated 366 patients, including 86 home-dwelling or hospitalized elderly with chronic pain and 280 patients undergoing cardiac surgery with acute pain. The mean age of patients was 77 (SD ± 8) years and approximately 8400 pain measurements were performed with four pain scales: Verbal Rating Scale (VRS), the Visual Analogue Scale (VAS), the Red Wedge Scale (RWS), and the Facial Pain Scale (FPS). Cognitive function, depression, functional ability in daily life, postoperative sedation and postoperative confusion were assessed with MMSE, GDS, Barthel Index, RASS, and CAM-ICU, respectively. The effects and plasma concentrations of fentanyl and oxycodone were measured in elderly (≥ 75 years) and middle-aged patients (≤ 60 years) and the opioid-sparing effect of pregabalin was studied after cardiac surgery. The VRS pain scores after movement correlated with the Barthel Index. The VRS was most successful in the groups of demented patients (MMSE 17-23, 11-16 and ≤ 10) and in elderly patients on the first day after cardiac surgery. The elderly had a higher plasma concentration of fentanyl at the end of surgery than younger patients. The plasma concentrations of oxycodone were comparable between the groups. Pain intensity on the VRS was lower and the sedation scores were higher in the elderly. Total oxycodone consumption during five postoperative days was reduced by 48% and the CAM-ICU scores were higher on the first postoperative day in the pregabalin group. The incidence of postoperative pain during movement was lower in the pregabalin group three months after surgery. This investigation demonstrates that chronic pain did not seem to impair daily activities in home-dwelling Finnish elderly. The VRS appeared to be applicable for elderly patients with clear cognitive dysfunction (MMSE ≤17) and it was the most feasible pain scale for the early postoperative period after cardiac surgery. After cardiac surgery, plasma concentrations of fentanyl in elderly were elevated, although oxycodone concentrations were at similar level compared to middle-aged patients. The elderly had less pain and were more sedated after doses of oxycodone. Therefore, particular attention must be given to individual dosing of the opioids in elderly surgical patients, who often need a smaller amount for adequate analgesia than middle-aged patients. The administration of pregabalin reduced postoperative oxycodone consumption after cardiac surgery. Pregabalin-treated patients had less confusion, and additionally to less postoperative pain on the first postoperative day and during movement at three months post-surgery. Pregabalin might be a new alternative as analgesic for acute postoperative and chronic pain management in the elderly. Its clinical role and safety remains to be verified in large-scale randomized and controlled studies. In the future, many clinical trials in the older category of patients will be needed to facilitate improvements in health care methods.
Resumo:
Chronic myeloid leukemia (CML) is one of the most studied human malignancies. It is caused by an autonomously active tyrosine kinase BCR-ABL, which is a result from a translocation between chromosomes 9 and 22 in the hematopoietic stem cell. As an outcome, a Philadelphia (Ph) chromosome is formed. BCR-ABL causes disturbed cell proliferation among other things. Although targeted tyrosine kinase inhibitor therapy has been developed in the beginning of the millenium and the survival rate has increased significantly, it is still not known why some patients benefit more from the treatment than others. Furthermore, the therapy is not considered to be curative. Before the era of tyrosine kinase inhibitors, the first-line treatment for CML was interferon-? (IFN-?). However, only a small proportion of patients benefitted from the treatment. Of these patients, a few were able to discontinue the treatment without renewal of the disease. The mechanism of IFN-? is not completely understood, but it is believed that differences in the immune system can be one of the reasons why some patients have better therapy response. Kreutzman, Rohon et al. have recently discovered that patients who have been able to stop IFN-? treatment have an increased number of NK- and T-cells. They also have a unique clonal T-cell population and more cytotoxic CD8+ T-cells and less CD4+ T-cells. The aim of this master’s thesis was to study the function of T- and NK-cells in IFN-? treated patients. Although it was shown earlier that IFN-? treated patients have increased NK-cell count, the function of these cells was unknown. Therefore, we have now investigated the killing potential of patients’ NK-cells, their activation status and cell surface antigen expression. In addition, we have also studied the activation status of patients’ T-cells and their cytotoxic properties. We observed that NK-cells from patients treated with IFN-? are unable to kill leukemic cells (K562) than NK-cells from healthy controls. In addition, patients on IFN-? treatment have more active T-cells and their NK-cells have an undifferentiated immunoregulatory phenotype. Patients that have been able to stop the treatment have anergic T-and NK-cells. As a conclusion our results suggest that IFN-? therapy induces increased NK-cell count, NK-cell immunoregulatory functions and more active T-cells. After stopping IFN-? therapy, NK- and T-cells from CML patients restore anergy typical for CML.
Resumo:
Using a combination of avidin-biotin microELISA and solid phase radioimmunoassay, we examined sera from 23 patients with systemic lupus erythematosus (SLE), two patients with established sensitivity to ingested shrimp, and 15 healthy normal subjects. In addition to IgG antibodies, varying amounts of IgE antibodies specific for native DNA (nDNA), denatured or single-stranded DNA (dnDNA), RNA, and tRNA were demonstrable in the sera of SLE patients, but not in the sera of normal subjects. A comparison of the specificity of nucleic acid-specific IgE antibodies present in the sera of shrimp-sensitive patients with those present in the sera of seven SLE patients revealed that the IgE antibodies in the sera of shrimp-sensitive patients specifically recognized shrimp tRNA but not yeast tRNA, calf thymus RNA, or calf thymus DNA, while those present in the sera of patients with SLE recognized all these nucleic acid antigens. The IgE antibodies directed against nDNA, dnDNA, RNA, and tRNA may mediate mast cell and basophil degranulation and thus contribute both to immediate-type hypersensitivity phenomena including hives seen in patients with SLE and to the localization of IgE-nucleic acid complexes in target
Resumo:
Fallibility is inherent in human cognition and so a system that will monitor performance is indispensable. While behavioral evidence for such a system derives from the finding that subjects slow down after trials that are likely to produce errors, the neural and behavioral characterization that enables such control is incomplete. Here, we report a specific role for dopamine/basal ganglia in response conflict by accessing deficits in performance monitoring in patients with Parkinson's disease. To characterize such a deficit, we used a modification of the oculomotor countermanding task to show that slowing down of responses that generate robust response conflict, and not post-error per se, is deficient in Parkinson's disease patients. Poor performance adjustment could be either due to impaired ability to slow RT subsequent to conflicts or due to impaired response conflict recognition. If the latter hypothesis was true, then PD subjects should show evidence of impaired error detection/correction, which was found to be the case. These results make a strong case for impaired performance monitoring in Parkinson's patients.
Resumo:
The current standard of care for hepatitis C virus (HCV) infection - combination therapy with pegylated interferon and ribavirin - elicits sustained responses in only similar to 50% of the patients treated. No alternatives exist for patients who do not respond to combination therapy. Addition of ribavirin substantially improves response rates to interferon and lowers relapse rates following the cessation of therapy, suggesting that increasing ribavirin exposure may further improve treatment response. A key limitation, however, is the toxic side-effect of ribavirin, hemolytic anemia, which often necessitates a reduction of ribavirin dosage and compromises treatment response. Maximizing treatment response thus requires striking a balance between the antiviral and hemolytic activities of ribavirin. Current models of viral kinetics describe the enhancement of treatment response due to ribavirin. Ribavirin-induced anemia, however, remains poorly understood and precludes rational optimization of combination therapy. Here, we develop a new mathematical model of the population dynamics of erythrocytes that quantitatively describes ribavirin-induced anemia in HCV patients. Based on the assumption that ribavirin accumulation decreases erythrocyte lifespan in a dose-dependent manner, model predictions capture several independent experimental observations of the accumulation of ribavirin in erythrocytes and the resulting decline of hemoglobin in HCV patients undergoing combination therapy, estimate the reduced erythrocyte lifespan during therapy, and describe inter-patient variations in the severity of ribavirin-induced anemia. Further, model predictions estimate the threshold ribavirin exposure beyond which anemia becomes intolerable and suggest guidelines for the usage of growth hormones, such as erythropoietin, that stimulate erythrocyte production and avert the reduction of ribavirin dosage, thereby improving treatment response. Our model thus facilitates, in conjunction with models of viral kinetics, the rational identification of treatment protocols that maximize treatment response while curtailing side effects.
Resumo:
Diabetes is a long-term disease during which the body's production and use of insulin are impaired, causing glucose concentration level to increase in the bloodstream. Regulating blood glucose levels as close to normal as possible leads to a substantial decrease in long-term complications of diabetes. In this paper, an intelligent online feedback-treatment strategy is presented for the control of blood glucose levels in diabetic patients using single network adaptive critic (SNAC) neural networks (which is based on nonlinear optimal control theory). A recently developed mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system has been revised and considered for synthesizing the neural network for feedback control. The idea is to replicate the function of pancreatic insulin, i.e. to have a fairly continuous measurement of blood glucose and a situation-dependent insulin injection to the body using an external device. Detailed studies are carried out to analyze the effectiveness of this adaptive critic-based feedback medication strategy. A comparison study with linear quadratic regulator (LQR) theory shows that the proposed nonlinear approach offers some important advantages such as quicker response, avoidance of hypoglycemia problems, etc. Robustness of the proposed approach is also demonstrated from a large number of simulations considering random initial conditions and parametric uncertainties. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
It is well known that hyperprolactinaemia in the human leads to infertility. The therapy of choice in India has been the administration of bromocriptine (BCR) as tablets, This mode of administration is generally accompanied by undesirable side-effects such as giddiness, nausea, vomiting and postural hypotension, We demonstrate here the efficacy of microdoses of BCR administered intranasally (IN) to hyperprolactinaemic patients (n = 6) in reducing significantly the elevated serum prolactin levels and maintain them within the normal range, The IN mode of BCR administration, in addition to reducing the effective dose of the drug by 4-20-fold, results in little or no side-effects otherwise associated with oral therapy.
Resumo:
Background: Depression and anxiety have been linked to serious cardiovascular events in patients with preexisting cardiac illness. A decrease in cardiac vagal function as suggested by a decrease in heart rate (HR) variability has been linked to sudden death. Methods: We compared LLE and nonlinearity scores of the unfiltered (UF) and filtered time series (very low, low, and high frequency; VLF, LF and HF) of HR between patients with depression (n = 14) and healthy control subjects (n = 18). Results: We found significantly lower LLE of the unfiltered series in either posture, and HF series in patients with major depression in supine posture (p < .002). LLE (LF/UF), which may indicate relative sympathetic activity was also significantly higher in supine and standing postures in patients (p < .05); LF/HF (LLE) was also higher in patients (p < .05) in either posture. Conclusions: These findings suggest that major depression is associated with decreased cardiac vagal function and a relative increase in sympathetic function, which may be related to the higher risk of cardiovascular mortality, in this group and illustrates the usefulness of nonlinear measures of chaos such as LLE in addition to the commonly used spectral measures.