806 resultados para Impact Evaluation
Resumo:
PURPOSE: The purpose of this study was to increase the understanding of the functional impact that coordination problems have during adolescence and early adult life. In particular, this study aimed to investigate the impact coordination deficits have on day-to-day functioning, activity levels, self-concept with respect to coordination, leisure pursuits, occupational types, accidents and injuries, as well as experiences learning to drive. RELEVANCE: This study may enable clinicians to identify at risk situations, such that appropriate prevention and targeting of treatment can occur. SUBJECTS: The participants involved in this study comprised two groups; 40 subjects previously diagnosed with DCD, and their matched controls. METHODS: Participants were initially contacted by mail for their consent to the study. Consenting participants were then contacted via telephone, and interviewed. ANALYSES: Data analysis was performed using SPSS. Chi squared analysis and Mann Whitney U test was also used to compare groups. RESULTS: During both age periods, the number of DCD subjects participating in sport was significantly less than the number of controls. Although in the 12-14 years age category, the two groups displayed similar results for the type of sport chosen, the 18 – 20 years age group, showed significant differences, with the number of DCD subjects participating in High level coordination activities, being significantly less than controls. Self-perception with respect to coordination was also significantly different amongst groups with more DCD subjects, having perceived themselves as being clumsy. Similarly, a significantly greater number of DCD subjects admitted to tripping over themselves regularly. Some differences have also been noted in the experiences of subjects learning to drive. First, the number of DCD subjects, who had difficulties learning to drive was significantly greater than controls. Second, a much greater number of Control subjects, compared to DCD subjects were successful in obtaining drivers license. Finally, also of interest is the 58% of DCD subjects who have experienced an accident whilst driving, compared to the 35% of controls. The last result of this study was that whilst there was no significant difference between groups, in the number of broken bones, dislocated joints, sprain, burns, stitches, or other significant injuries, the number of control subjects suffering muscle strains was significantly greater than the number of DCD subjects. CONCLUSION: The results of this study indicate that DCD has many implications on day-to-day functioning, both in adolescence and early adulthood. Findings have shown despite the significant sensory-motor deficits displayed by DCD subjects, the impact that this has on day-to-day functioning may be reduced by lifestyle modification.
Resumo:
Automatic Term Recognition (ATR) is a fundamental processing step preceding more complex tasks such as semantic search and ontology learning. From a large number of methodologies available in the literature only a few are able to handle both single and multi-word terms. In this paper we present a comparison of five such algorithms and propose a combined approach using a voting mechanism. We evaluated the six approaches using two different corpora and show how the voting algorithm performs best on one corpus (a collection of texts from Wikipedia) and less well using the Genia corpus (a standard life science corpus). This indicates that choice and design of corpus has a major impact on the evaluation of term recognition algorithms. Our experiments also showed that single-word terms can be equally important and occupy a fairly large proportion in certain domains. As a result, algorithms that ignore single-word terms may cause problems to tasks built on top of ATR. Effective ATR systems also need to take into account both the unstructured text and the structured aspects and this means information extraction techniques need to be integrated into the term recognition process.
Resumo:
Aims: Characterization of the representative protozoan Acanthamoeba polyphaga surface carbohydrate exposure by a novel combination of flow cytometry and ligand-receptor analysis. Methods and Results: Trophozoite and cyst morphological forms were exposed to a panel of FITC-lectins. Population fluorescence associated with FITC-lectin binding to acanthamoebal surface moieties was ascertained by flow cytometry. Increasing concentrations of representative FITC-lectins, saturation binding and determination of K d and relative Bmax values were employed to characterize carbohydrate residue exposure. FITC-lectins specific for N-acetylglucosamine, N-acetylgalactosamine and mannose/glucose were readily bound by trophozoite and cyst surfaces. Minor incremental increases in FITC-lectin concentration resulted in significant differences in surface fluorescence intensity and supported the calculation of ligand-binding determinants, Kd and relative B max, which gave a trophozoite and cyst rank order of lectin affinity and surface receptor presence. Conclusions: Trophozoites and cysts expose similar surface carbohydrate residues, foremost amongst which is N-acetylglucosamine, in varying orientation and availability. Significance and Impact of the Study: The outlined versatile combination of flow cytometry and ligand-receptor analysis allowed the characterization of surface carbohydrate exposure by protozoan morphological forms and in turn will support a valid comparison of carbohydrate exposure by other single-cell protozoa and eucaryotic microbes analysed in the same manner.
Resumo:
This paper reports on an assessment of an ongoing 6-Sigma program conducted within a UK based (US owned) automotive company. It gives an overview of the management of the 6-sigma programme and the 23 in-house methodology used. The analysis given in the paper pays particular focus to the financial impacts that individual projects have had. Three projects are chosen from the hundreds that have been completed and are discussed in detail, including which specific techniques have been used and how financially successful the projects were. Commentary is also given on the effectiveness of the overall program along with a critique of how the implementation of 6-Sigma could be more effectively managed in the future. This discussion particularly focuses upon issues such as: project selection and scoping, financial evaluation and data availability, organisational awareness, commitment and involvement, middle management support, functional variation, and maintaining momentum during the rollout of a lengthy program.
Resumo:
The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again till the statutory regulatory authority approves the project. Moreover, project analysis through above process often results sub-optimal project as financial analysis may eliminate better options, as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system, which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple-attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Purpose – The purpose of this paper is to explore the role and relevance of external standards in demonstrating the value and impact of academic library services to their stakeholders. Design/methodology/approach – Two UK standards, Charter Mark and Customer Service Excellence, are evaluated via an exploratory case study, employing multiple data collection techniques. Methods and results of phases 1-2 of a three phase research project are outlined. Findings – Despite some limitations, standards may assist the manager in demonstrating the value, impact and quality of academic libraries in a recessional environment. Active engagement and partnership with customers is imperative if academic libraries are to be viewed as vital to their parent organisations and thus survive. Originality/value – This paper provides a systematic evaluation of the role of external accreditation standards in measuring academic library service value and impact.
Resumo:
Advances in technology coupled with increasing labour costs have caused service firms to explore self-service delivery options. Although some studies have focused on self-service and use of technology in service delivery, few have explored the role of service quality in consumer evaluation of technology-based self-service options. By integrating and extending the self-service quality framework the service evaluation model and the Technology Acceptance Model the authors address this emerging issue by empirically testing a comprehensive model that captures the antecedents and consequences of perceived service quality to predict continued customer interaction in the technology-based self-service context of Internet banking. Important service evaluation constructs like perceived risk, perceived value and perceived satisfaction are modelled in this framework. The results show that perceived control has the strongest influence on service quality evaluations. Perceived speed of delivery, reliability and enjoyment also have a significant impact on service quality perceptions. The study also found that even though perceived service quality, perceived risk and satisfaction are important predictors of continued interaction, perceived customer value plays a pivotal role in influencing continued interaction.
Resumo:
PURPOSE: To evaluate theoretically three previously published formulae that use intra-operative aphakic refractive error to calculate intraocular lens (IOL) power, not necessitating pre-operative biometry. The formulae are as follows: IOL power (D) = Aphakic refraction x 2.01 [Ianchulev et al., J. Cataract Refract. Surg.31 (2005) 1530]; IOL power (D) = Aphakic refraction x 1.75 [Mackool et al., J. Cataract Refract. Surg.32 (2006) 435]; IOL power (D) = 0.07x(2) + 1.27x + 1.22, where x = aphakic refraction [Leccisotti, Graefes Arch. Clin. Exp. Ophthalmol.246 (2008) 729]. METHODS: Gaussian first order calculations were used to determine the relationship between intra-operative aphakic refractive error and the IOL power required for emmetropia in a series of schematic eyes incorporating varying corneal powers, pre-operative crystalline lens powers, axial lengths and post-operative IOL positions. The three previously published formulae, based on empirical data, were then compared in terms of IOL power errors that arose in the same schematic eye variants. RESULTS: An inverse relationship exists between theoretical ratio and axial length. Corneal power and initial lens power have little effect on calculated ratios, whilst final IOL position has a significant impact. None of the three empirically derived formulae are universally accurate but each is able to predict IOL power precisely in certain theoretical scenarios. The formulae derived by Ianchulev et al. and Leccisotti are most accurate for posterior IOL positions, whereas the Mackool et al. formula is most reliable when the IOL is located more anteriorly. CONCLUSION: Final IOL position was found to be the chief determinant of IOL power errors. Although the A-constants of IOLs are known and may be accurate, a variety of factors can still influence the final IOL position and lead to undesirable refractive errors. Optimum results using these novel formulae would be achieved in myopic eyes.
Resumo:
As a research group with no commercial interest in any macular pigment optical density (MPOD) measurement devices or nutritional supplements, we feel that we were well-placed to carry out an independent clinical assessment of the reliability of the MPS 9000 (Tinsley Precision Instruments, Redhill, Surrey, UK). Our study was prompted by the fact that we could not find any reported coefficient of repeatability value within the literature, and none was provided by the manufacturer.1 We had planned to use this instrument in our own research studies investigating the impact of nutritional supplementation on MPOD. For this purpose, we needed …
Resumo:
This thesis considers two basic aspects of impact damage in composite materials, namely damage severity discrimination and impact damage location by using Acoustic Emissions (AE) and Artificial Neural Networks (ANNs). The experimental work embodies a study of such factors as the application of AE as Non-destructive Damage Testing (NDT), and the evaluation of ANNs modelling. ANNs, however, played an important role in modelling implementation. In the first aspect of the study, different impact energies were used to produce different level of damage in two composite materials (T300/914 and T800/5245). The impacts were detected by their acoustic emissions (AE). The AE waveform signals were analysed and modelled using a Back Propagation (BP) neural network model. The Mean Square Error (MSE) from the output was then used as a damage indicator in the damage severity discrimination study. To evaluate the ANN model, a comparison was made of the correlation coefficients of different parameters, such as MSE, AE energy, AE counts, etc. MSE produced an outstanding result based on the best performance of correlation. In the second aspect, a new artificial neural network model was developed to provide impact damage location on a quasi-isotropic composite panel. It was successfully trained to locate impact sites by correlating the relationship between arriving time differences of AE signals at transducers located on the panel and the impact site coordinates. The performance of the ANN model, which was evaluated by calculating the distance deviation between model output and real location coordinates, supports the application of ANN as an impact damage location identifier. In the study, the accuracy of location prediction decreased when approaching the central area of the panel. Further investigation indicated that this is due to the small arrival time differences, which defect the performance of ANN prediction. This research suggested increasing the number of processing neurons in the ANNs as a practical solution.