785 resultados para High-intensity exercise
Resumo:
Aim. - This study aimed to test if investigate whether the anaerobic work capacity is replenished while exercising at critical power intensity. Then, a known exercise duration, which demands high anaerobic energy contribution, was compared to intermittent exercise duration with passive and active (cycling at critical power intensity) rest periods.Methods. - Nine participants performed five sessions of testing. From the 1st to the 3rd sessions, individuals cycled continuously at different workloads (P-high, P-intermediate and P-low) in order to estimate the critical power and the anaerobic work capacity. The 4th and 5th sessions were performed in order to determine the influence of anaerobic work capacity replenishment oil exercise duration. They consisted of manipulating the resting type (passive or active) between two cycling efforts. The total exercise duration was determined by the sum of the two cycling efforts duration.Results. - The exercise duration under passive resting condition (408.0 +/- 42.0 s) was longer (p<0.05) than known exercise duration at P-intermediate (T-intermediate = 305.8 +/- 30.5 s) and than exercise duration performed under active resting conditions (T-active = 304.4 +/- 30.7s). However, there was no significant difference between T-intermediate and T-active.Conclusion. - These results demonstrated indirect evidence that the anaerobic work capacity is not replenished while exercising at critical power intensity. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Running exercises are frequently related to muscular injuries, which may be a result of muscular imbalance. The present study aimed to verify the effects of heavy-intensity continuous running exercise on the functional and conventional hamstrings: quadriceps ratios, and also in the knee flexors and extensors EMG activity in active non-athletic individuals. Sixteen active males performed maximal isokinetic concentric and eccentric knee flexions and extensions at 60 degrees s(-1) and 180 degrees s(-1). In another session, the same procedure was conducted after a continuous running exercise at 95% onset of blood lactate accumulation. Torque and electromyographic ratios were calculated from peak torque and integrated electromyographic activity (knee flexor and extensors). Creatine kinase was measured before and 24 h after running exercise. Eccentric torque (knee flexion and extension) decreased significantly after running only at 180 degrees s(-1) (p < 0.05). No differences were found for the conventional torque ratios (p > 0.05), however, the functional torque ratios at 180 degrees s(-1) decreased significantly after running (p < 0.05). No effects on the electromyographic activity and electronnyographic ratios were found (p > 0.05). Creatine kinase increased slightly 24 h after running (p < 0.05). Heavy-intensity continuous running exercise decreased knee flexor and extensor eccentric torque, and functional torque ratios under fast velocities (180 degrees s(-1)), probably as result of peripheral fatigue. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Background: Animal models appear well-suited for studies into the role of exercise in the prevention of non-insulin-dependent diabetes mellitus (NIDDM). The aim of the present study was to analyze glucose homeostasis and blood lactate during an exercise swimming test in rats treated with alloxan during the neonatal period and/or fed a high calorie diet from weaning onwards.Methods: Rats were injected with alloxan (200 mg/kg, i.p.) or vehicle (citrate buffer) at 6 days of age. After weaning, rats were divided into four groups and fed either a balanced diet or a high-caloric diet as follows: C, control group (vehicle + normal diet); A, alloxan-treated rats fed the normal diet; H, vehicle-treated rats fed the high-caloric diet; and HA, alloxan-treated rats fed the high-caloric diet.Results: Fasting serum glucose levels were higher in groups A and AH compared with the control group. The Homeostatic Model Assessment index varied in the groups as follows: H > A > HA = C. There were no differences in free fatty acids or blood lactate concentrations during the swim test.Conclusions: Alloxan-treated rats fed a normal or high-caloric diet have the potential to be used in studies analyzing the role physical exercise plays in the prevention of NIDDM.
Resumo:
The aims of this study were: (1) to verify the validity of previous proposed models to estimate the lowest exercise duration (T (LOW)) and the highest intensity (I (HIGH)) at which VO(2)max is reached (2) to test the hypothesis that parameters involved in these models, and hence the validity of these models are affected by aerobic training status. Thirteen cyclists (EC), eleven runners (ER) and ten untrained (U) subjects performed several cycle-ergometer exercise tests to fatigue in order to determine and estimate T (LOW) (ET (LOW)) and I (HIGH) (EI (HIGH)). The relationship between the time to achieved VO(2)max and time to exhaustion (T (lim)) was used to estimate ET (LOW). EI (HIGH) was estimated using the critical power model. I (HIGH) was assumed as the highest intensity at which VO2 was equal or higher than the average of VO(2)max values minus one typical error. T (LOW) was considered T (lim) associated with I (HIGH). No differences were found in T (LOW) between ER (170 +/- 31 s) and U (209 +/- 29 s), however, both showed higher values than EC (117 +/- 29 s). I (HIGH) was similar between U (269 +/- 73 W) and ER (319 +/- 50 W), and both were lower than EC (451 +/- 33 W). EI (HIGH) was similar and significantly correlated with I-HIGH only in U (r = 0.87) and ER (r = 0.62). ET (LOW) and T (LOW) were different only for U and not significantly correlated in all groups. These data suggest that the aerobic training status affects the validity of the proposed models for estimating I (HIGH).
Resumo:
The present study was designed to analyse the effects of aerobic exercise on the metabolic effects of alloxan. Male Wistar newborn rats (2 days old) received alloxan (200 mg (kg body weight)(-1)) intraperitoneally (A rats). Vehicle-injected rats were used as controls (C rats). At 28 days old, some of the A rats were subjected to swimming for 1 h day(-1), 5 day week(-1) (AT rats). At 28, 60 and 90 days old the animals were subjected to glucose (GTTo) and insulin (ITTsc) tolerance tests. All the animals were then killed by decapitation for blood and tissue evaluations. on the 60th day, there was a reduction in blood glucose level during the GTTo (mmol l(-1) (90 min)(-1)) in the AT rats (7640.7+/-694.0) with respect to C (7057.5+/-776.9) and A (8555.6+/-1096.7) rats. However on the 90th day, AT rats showed higher glucose levels (8004.6+/-267.9) when compared to the other groups (C, 7305.5+/-871.2; A, 7088.8+/-536.9). The serum free fatty acid (FFA) concentration (muEq l(-1)) was higher in the alloxan-treated animals (A, 231.1+/-58.5; AT, 169.8+/-20.1) than in controls (C, 101.4+/-22.4). In conclusion, although the high blood glucose level is transitory in the A animals, some blood and tissue alterations remain and can be harmful to the maintenance of homeostasis. Physical exercise counteracted only partially these alterations. Furthermore, training worsened glucose tolerance at the 90th day, suggesting that exercise intensity should be adjusted to the diabetic condition.
Resumo:
The objective of this study was to analyze, in triathletes, the possible influence of the exercise mode (running x cycling) on time to exhaustion (TTE) and oxygen uptake (VO2) response during exercise performed at the intensity associated with the achievement of maximal oxygen uptake (IVO2max). Eleven male triathletes (21.8 +/- 3.8 yr) performed the following tests on different days on a motorized treadmill and on a cycle ergometer: 1) incremental tests in order to determine VO2max and IVO2max and, 2) constant work rate tests to exhaustion at IVO2max to determine TTE and to describe VO2 response (time to achieve VO2max-TAVO(2max) and time maintained at VO2max-TMVO2max). No differences were found in VO2max, TTE and TMVO2max obtained on the treadmill tests (63.7 +/- 4.7 ml.kg(-1).min(-1); 324.6 +/- 109.1 s; 178.9 +/- 93.6 s) and cycle ergometer tests (61.4 +/- 4.5 ml.kg(-1).min(-1); 390.4 +/- 114.4 s; 213.5 +/- 102.4 s). However, TAVO(2max) was influenced by exercise mode (145.7 +/- 25.3 vs. 176.8 +/- 20.1 s; in treadmill and cycle ergometer, respectively; p = 0.006). It is concluded that exercise modality affects the TAVO(2max) without influencing TTE and TMVO2max during exercise at IVO2max in triathletes.
Resumo:
Few studies dealing with effort intensity during swimming exercise in rats have been reported in the literature. Recently, with the use of the lactate minimum test (LMT), our group estimated the minimum blood lactate (MBL) of rats during swimming exercises. This information allowed accurate evaluation of the effort intensity developed by rats during swimming exercise. The present study was designed to evaluate the effects of swimming exercise sessions in below, equivalent and above intensities to MBL, on protein metabolism of rats. Adult (90 days) sedentary male Wistar rats were used in the present study. Mean values of MBL, in the present study, were obtained at blood concentration of 6.7 +/- 0.4 mmol/L with a load of 5% bw. The animals were sacrificed at rest (R) or immediately after a single swimming session (30 min) supporting loads below (3.5% bw), equivalent (5.0% bw) and high load (6.5% bw) to AT. Blood samples were collected each 5 min of exercise for lactate determination. Soleus muscle protein synthesis (amount of L-[C-14] fenil alanyn incorporation to protein) and breakdown (tyrosin release) rates were evaluated. Blood lactate concentrations (mmol/L) stabilized with the below (5.4 +/- 0.01) and equivalent (6.4 +/- 0.006) to MBL but increased, progressively, with the high load. There were no differences in protein synthesis (pmol/mg.h) among rest values (65.2 +/- 3.4) and after-exercise supporting the loads below (61.5 +/- 1.3) and the equivalent (60.7+/-1.7) to MBL but there was a decrease with the high load (36.6+/-2.0). Protein breakdown rates (pmol/g.h) increase after exercise supporting the loads below (227.0 +/- 6.1), equivalent (227.9 +/- 6.0) and high (363.6 +/- 7.1) to MBL in relation to the rest (214.3 +/- 6.0). The results indicate the viability of the application of LMT in studies with rats since it detected alterations imposed by exercise.
Resumo:
β-Adrenoreceptor blockade is reported to impair endurance, power output and work capacity in healthy subjects and patients with hypertension. The purpose of this study was to investigate the effect in eighth athletic males of an acute β-adrenergic blockade with propranolol on their individual power output corresponding to a defined lactate minimum (LM). Eight fit males (cyclist or triathlete) performed a protocol to determine the power output corresponding to their individual LM (defined from an incremental exercise test after a rapidly induced exercise lactic acidosis). This protocol was performed twice in a double-blind randomized order by each athlete first ingesting propranolol (80mg) and in a second trial a placebo, 120 minutes respectively prior to the test sequence. The blood lactate concentration obtained 7 minutes after anaerobic exercise (a Wingate test) was significantly lower after acute β-adrenergic blockade (8.6 ± 1.6mM) than under the placebo condition (11.7 ± 1.6mM). The work rate at the LM was lowered from 215.0 ± 18.6 to 184.0 ± 18.6 watts and heart rate at the LM was reduced from 165 ± 1.5 to 132 ± 2.2 beats/minute as a result of the blockade. There was a non-significant correlation (r = 0.29) between the power output at the LM with and without acute β-adrenergic blockade. In conclusion, since the intensity corresponding to the LM is related to aerobic performance, the results of the present study, are able to explain in part, the reduction in aerobic power output produced during β-adrenergic blockade.
Resumo:
Background. Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Methods. Male Wistar rats were divided into sedentary (SD); trained (TR); sedentary diet (SDD) and trained diet (TRD) groups. Run training (RT) was performed in sessions of 60 min, 5 days/week for 12 weeks (70-80% VO2max). Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx -) were measured. Concentration- response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1) was assessed by Western blotting. Results. High caloric diet increased triglycerides concentration (SDD: 216 ± 25 mg/dl) and exercise training restored to the baseline value (TRD: 89 ± 9 mg/dl). Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 ± 0.1 and TRD: 1.24 ± 0.3 ng/ml) as compared to sedentary animals (SD: 0.87 ± 0.1 and SDD: 2.57 ± 0.3 ng/ml). On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 ± 6; TR: 140 ± 8; SDD: 156 ± 8 and TRD 153 ± 9 mg/dl). Neither high caloric diet nor RT modified NO x - levels (SD: 27 ± 4; TR: 28 ± 6; SDD: 27 ± 3 and TRD: 30 ± 2 μM). Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%), but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups) or mesenteric rings (10%, for TR and 17%, to TRD groups) that was accompanied by up-regulation of SOD-1 expression and reduction in triglycerides levels. Conclusion. The improvement in endothelial function by physical preconditioning in mesenteric and aortic arteries from high caloric fed-rats was directly related to an increase in NO bioavailability to the smooth muscle mostly due to SOD-1 up regulation. © 2008 de Moraes et al; licensee BioMed Central Ltd.
Resumo:
A swimming periodized experimental training model in rats in which different training protocols (TP) were classified in aerobic (A) and anaerobic (AN) intensity levels. The purpose of the present study was to verify if the classification of the TP used in the periodized training experimental model presented the blood lactate concentration [La] response adequate to the aerobic and anaerobic intensities levels. Twenty three male Wistar rats were divided into three groups. Two groups of swimming training (continuous, CT, n = 7, and periodized training, PET, n = 7) rats were evaluated during 5 weeks in eight different TP (TP-1 to TP-8) through the analysis of the [La] response. The third group was the sedentary control (SC, n = 9). The TP were classified in five intensity levels, three aerobic (A-1, A-2, A-3) and two anaerobic (AN-1, AN-2). Analysis of variance (ANOVA one-way, P<0.05) indicated significant differences in the [La] among the TP and among the five intensity levels. All TP of the A-2 and A-3 intensity levels differed from the A-1 and AN-1. The A-1 and AN-1 also differed among them. These findings demonstrate that the TP were classified properly at different levels of aerobic and anaerobic intensities, as based on the [La] response in a way similar to that of high performance swimming with humans. The results offer new perspectives for the study of exercise training in swimming rats at different levels intensity for performance or for health.
Resumo:
The circulating level of cortisol is regulated by the hypothalamic-pituitary-adrenal axis through a neuroendocrine feedback circuit. This circuit can be activated by physiological stimuli such as stress, diseases, and exercise. High levels of serum cortisol hormone normally occur as a byproduct of aging, and can cause several types of damage to the organism and exacerbate immunosenescence. There is a great deal of variability in the cortisol response with regard to type, intensity, volume, and frequency of exercise. However, these relationships have been extensively studied with respect to the acute effects of exercise. Despite the well-known effects of acute exercise on cortisol response, it is unclear how it is affected by chronic exercise and the aging process. Therefore, the aim of this study was to conduct a review of studies that attempt to analyze the influence of chronic exercise on serum cortisol hormone in older people. In order to accomplish this goal, a review from 1970 to June 2012 period was performed using the following databases: Biological Abstracts, PsycINFO, PubMed/Medline, and the Web of Science. Eight articles met the criteria used in this study. Based on the included articles, chronic exercise may influence the serum levels of cortisol levels in older people. Despite this evidence, these results may not be generalized to the entire population of older people, given the few number of studies and especially because the studies showed diversity in variables and methodologies. © 2013 European Group for Research into Elderly and Physical Activity (EGREPA).
Resumo:
Objetivo: Investigar os efeitos do exercício físico agudo com diferentes intensidades sobre a sensibilidade à insulina e a atividade da proteína quinase B/Akt no músculo esquelético de camundongos obesos. Método: Foram utilizados camundongos Swiss, divididos aleatoriamente em quatro grupos, que receberam dieta padrão (grupo controle) ou dieta hiperlipídica (grupos obeso sedentário e grupos obesos exercitados 1 e 2), por período de 12 semanas. Dois diferentes protocolos de exercício foram utilizados: natação durante 1 hora com ou sem sobrecarga de 5% da massa corporal. O teste de tolerância à insulina foi realizado para estimar a sensibilidade à insulina. E os níveis protéicos da proteína quinase B/Akt e de sua fosforilação foram determinados no músculo esquelético dos camundongos, através da técnica de Western blot. Resultado: Uma sessão de exercício físico foi capaz de inibir a resistência à insulina em decorrência de uma dieta hiperlipídica. Foi possível demonstrar um aumento na fosforilação da proteína quinase B/Akt, melhora da sinalização da insulina e redução da glicemia de jejum nos camundongos que realizaram 1 hora de natação sem sobrecarga adicional e nos camundongos que realizaram 1 hora de natação com sobrecarga adicional de 5% de sua massa corporal. Entretanto, não houve diferença significativa entre os grupos que realizaram o exercício em diferentes intensidades. Conclusão: Independente da intensidade, o exercício físico aeróbio conseguiu aumentar a sensibilidade à insulina e a fosforilação da proteína quinase B/Akt, revelando ser uma boa forma de tratamento e prevenção do diabetes tipo 2.
Resumo:
The mechanisms underpinning fatigue and exhaustion, and the specific sources of exercise-endurance intensity regulation and (in)tolerance have been investigated for over a century. Although several scientific theories are currently available, over the past five years a new framework called Psychobiological model has been proposed. This model gives greater attention to perceptual and motivational factors than its antecedents, and their respective influence on the conscious process of decision-making and behavioral regulation. In this review we present experimental evidences and summarize the key points of the Psychobiological model to explain intensity regulation and (in)tolerance in endurance exercise. Still, we discuss how the Psychobiological model explains training-induced adaptations related to improvements in performance, experimental manipulations, its predictions, and propose future directions for this investigative area. The Psychobiological model may give a new perspective to the results already published in the literature, helping scientists to better guide their research problems, as well as to analyze and interpret new findings more accurately.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)