865 resultados para Hexose transporter


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frequency distribution of SNPs and haplotypes in the ABCB1, SLCO1B1 and SLCO1B3 genes varies largely among continental populations. This variation can lead to biases in pharmacogenetic studies conducted in admixed populations such as those from Brazil and other Latin American countries. The aim of this study was to evaluate the influence of self-reported colour, geographical origin and genomic ancestry on distributions of the ABCB1, SLCO1B1 and SLCO1B3 polymorphisms and derived haplotypes in admixed Brazilian populations. A total of 1039 healthy adults from the north, north-east, south-east and south of Brazil were recruited for this investigation. The c.388A>G (rs2306283), c.463C>A (rs11045819) and c.521T>C (rs4149056) SNPs in the SLCO1B1 gene and c.334T>G (rs4149117) and c.699G>A (rs7311358) SNPs in the SLCO1B3 gene were determined by Taqman 5'-nuclease assays. The ABCB1 c.1236C>T (rs1128503), c.2677G>T/A (rs2032582) and c.3435C>T (rs1045642) polymorphisms were genotyped using a previously described single-base extension/termination method. The results showed that genotype and haplotype distributions are highly variable among populations of the same self-reported colour and geographical region. However, genomic ancestry showed that these associations are better explained by a continuous variable. The influence of ancestry on the distribution of alleles and haplotype frequencies was more evident in variants with large differences in allele frequencies between European and African populations. Design and interpretation of pharmacogenetic studies using these transporter genes should include genomic controls to avoid spurious conclusions based on improper matching of study cohorts from Brazilian populations and other highly admixed populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: We aimed to evaluate the effects of resistance exercise (RE) and leucine (LEU) supplementation on dexamethasone (DEXA)-induced muscle atrophy and insulin resistance. Methods: Male Wistar rats were randomly divided into DEXA(DEX), DEXA + RE (DEX-RE), DEXA + LEU (DEX-LEU), and DEXA + RE + LEU (DEX-RE-LEU) groups. Each group received DEXA 5 mg . kg(-1) . d(-1) for 7 d from drinking water and were pair-fed to the DEX group; LEU-supplemented groups received 0.135 g . kg(-1) . d(-1) through gavage for 7 d; the RE protocol was based on three sessions of squat-type exercise composed by three sets of 10 repetitions at 70% of maximal voluntary strength capacity. Results: The plantaris mass was significantly greater in both trained groups compared with the non-trained groups. Muscle cross-sectional area and fiber areas did not differ between groups. Both trained groups displayed significant increases in the number of intermediated fibers (IIa/IIx), a decreased number of fast-twitch fibers (IIb), an increased ratio of the proteins phospho(Ser2448)/ total mammalian target of rapamycin and phospho(Thr389)/total 70-kDa ribosomal protein S6 kinase. and a decreased ratio of phospho(Ser253)/total Forkhead box protein-3a. Plasma glucose was significantly increased in the DEX-LEU group compared with the DEX group and RE significantly decreased hyperglycemia. The DEX-LEU group displayed decreased glucose transporter-4 translocation compared with the DEX group and RE restored this response. LEU supplementation worsened insulin sensitivity and did not attenuate muscle wasting in rats treated with DEXA. Conversely, RE modulated glucose homeostasis and fiber type transition in the plantaris muscle. Conclusion: Resistance exercise but not LEU supplementation promoted fiber type transition and improved glucose homeostasis in DEXA-treated rats. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose Recent studies reported the association of SLCO1B1 haplotypes with the development of musculoskeletal side effects during simvastatin use. The aim was to evaluate the pharmacogenetic association of SLCO1B1 haplotypes with atorvastatin-induced myalgia in a sample of individuals on high-dose atorvastatin regimens. Methods One hundred and forty-three patients with familial hypercholesterolemia were followed for at least 12 months while receiving atorvastatin. Genotypes for the rs2306283 (c.A388G) and rs4149056 (c.T521C) polymorphisms were detected by high-resolution melting analysis. These markers form four distinct haplotypes (*1A, *1B, *5 and *15). Results During the follow-up period, 14 (9.8%) patients developed myalgia and 16 (11.2%) presented CK levels more than 3 times the upper limit of the normal range. No association of the SLCO1B1 rs2306283 and rs4149056 genotypes or haplotypes with the presence of myalgia or creatine kinase (CK) values was found. Presence of rs2306283 AG+GG genotypes was not associated with increased risks of myalgia or abnormal CK values (OR 2.08, 95% CI 0.62-7.00, p=0.24 and OR 0.51, 95% CI 0.21-1.26, p=0.15 respectively). The presence of rs4149056 TC+CC genotypes was also not associated with increased risk of myalgia or abnormal CK values (OR 2.24, 95% CI 0.47-10.72, p=0.31 and OR 1.51, 95% CI 0.57-3.96, p=0.41 respectively). Conclusions Our findings reaffirm that the SLCO1B1 genetic risk appears to be greater in those patients receiving simvastatin compared with those receiving atorvastatin. This suggests that the importance of SLCO1B1 haplotypes depends on the specific statin that has been used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leishmania parasites, the causative agent of leishmaniasis, are transmitted through the bite of an infected sand fly. Leishmania parasites present two basic forms known as promastigote and amastigote which, respectively, parasitizes the vector and the mammalian hosts. Infection of the vertebrate host is dependent on the development, in the vector, of metacyclic promastigotes, however, little is known about the factors that trigger metacyclogenesis in Leishmania parasites. It has been generally stated that "stressful conditions" will lead to development of metacyclic forms, and with the exception of a few studies no detailed analysis of the molecular nature of the stress factor has been performed. Here we show that presence/absence of nucleosides, especially adenosine, controls metacyclogenesis both in vitro and in vivo. We found that addition of an adenosine-receptor antagonist to in vitro cultures of Leishmania amazonensis significantly increases metacyclogenesis, an effect that can be reversed by the presence of specific purine nucleosides or nucleobases. Furthermore, our results show that proliferation and metacyclogenesis are independently regulated and that addition of adenosine to culture medium is sufficient to recover proliferative characteristics for purified metacyclic promastigotes. More importantly, we show that metacyclogenesis was inhibited in sand flies infected with Leishmania infantum chagasi that were fed a mixture of sucrose and adenosine. Our results fill a gap in the life cycle of Leishmania parasites by demonstrating how metacyclogenesis, a key point in the propagation of the parasite to the mammalian host, can be controlled by the presence of specific purines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionizing radiation is the most recognized risk factor for meningioma in pediatric long-term cancer survivors. Information in this rare setting is exceptional. We report the clinical and cytogenetic findings in a radiation-induced atypical meningioma following treatment for desmoplastic medulloblastoma in a child. This is the second study to describe the cytogenetic aspects on radiation-induced meningiomas in children. Chromosome banding analysis revealed a 46, XX, t(1;3)(p22;q12), del(1)(p?)[8]/46, XX[12]. Loss of chromosome 1p as a consequence of irradiation has been proposed to be more important in the development of secondary meningiomas in adults. Deletions in the short arm of chromosome 1 also appear to be a shared feature in both pediatric cases so far analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ATP-binding cassette transporter A1 mediates the export of excess cholesterol from macrophages, contributing to the prevention of atherosclerosis. Advanced glycated albumin (AGE-alb) is prevalent in diabetes mellitus and is associated with the development of atherosclerosis. Independently of changes in ABCA-1 mRNA levels, AGE-alb induces oxidative stress and reduces ABCA-1 protein levels, which leads to macrophage lipid accumulation. These metabolic conditions are known to elicit endoplasmic reticulum (ER) stress. We sought to determine if AGE-alb induces ER stress and unfolded protein response (UPR) in macrophages and how disturbances to the ER could affect ABCA-1 content and cholesterol efflux in macrophages. AGE-alb induced a time-dependent increase in ER stress and UPR markers. ABCA-1 content and cellular cholesterol efflux were reduced by 33% and 47%, respectively, in macrophages treated with AGE-alb, and both were restored by treatment with 4-phenyl butyric acid (a chemical chaperone that alleviates ER stress), but not MG132 (a proteasome inhibitor). Tunicamycin, a classical ER stress inductor, also impaired ABCA-1 expression and cholesterol efflux (showing a decrease of 61% and 82%, respectively), confirming the deleterious effect of ER stress in macrophage cholesterol accumulation. Glycoxidation induces macrophage ER stress, which relates to the reduction in ABCA-1 and in reverse cholesterol transport, endorsing the adverse effect of macrophage ER stress in atherosclerosis. Thus, chemical chaperones that alleviate ER stress may represent a useful tool for the prevention and treatment of atherosclerosis in diabetes. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidences have suggested that the endocannabinoid system is overactive in obesity, resulting in enhanced endocannabinoid levels in both circulation and visceral adipose tissue. The blockade of cannabinoid receptor type 1 (CB1) has been proposed for the treatment of obesity. Besides loss of body weight, CB1 antagonism improves insulin sensitivity, in which the glucose transporter type 4 (GLUT4) plays a key role. The aim of this study was to investigate the modulation of GLUT4-encoded gene (Slc2a4 gene) expression by CB1 receptor. For this, 3T3-L1 adipocytes were incubated in the presence of a highly selective CB1 receptor agonist (1 mu M arachidonyl-2'-chloroethylamide) and/or a CB1 receptor antagonist/inverse agonist (0.1, 0.5, or 1 mu M AM251, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide). After acute (2 and 4 h) and chronic (24 h) treatments, cells were harvested to evaluate: i) Slc2a4, Cnr1 (CB1 receptor-encoded gene), and Srebf1 type a (SREBP-1a type-encoded gene) mRNAs (real-time PCR); ii) GLUT4 protein (western blotting); and iii) binding activity of nuclear factor (NF)-kappa B and sterol regulatory element-binding protein (SREBP)-1 specifically in the promoter of Slc2a4 gene (electrophoretic mobility shift assay). Results revealed that both acute and chronic CB1 receptor antagonism greatly increased (similar to 2.5-fold) Slc2a4 mRNA and protein content. Additionally, CB1-induced upregulation of Slc2a4 was accompanied by decreased binding activity of NF-kappa B at 2 and 24 h, and by increased binding activity of the SREBP-1 at 24 h. In conclusion, these findings reveal that the blockade of CB1 receptor markedly increases Slc2a4/GLUT4 expression in adipocytes, a feature that involves NF-kappa B and SREBP-1 transcriptional regulation. Journal of Molecular Endocrinology (2012) 49, 97-106

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of atherosclerosis and the inflammatory response were investigated in LDLr-KO mice on three high-fat diets (40% energy as fat) for 16 weeks: trans (TRANS), saturated (SAFA) or omega-6 polyunsaturated (PUFA) fats. The following parameters were measured: plasma lipids, aortic root total cholesterol (TC), lesion area (Oil Red-O), ABCA1 content and macrophage infiltration (immunohistochemistry), collagen content (Picrosirius-red) and co-localization of ABCA1 and macrophage (confocal microscopy) besides the plasma inflammatory markers (IL-6, TNF-alpha) and the macrophage inflammatory response to lipopolysaccharide from Escherichia coli (LPS). As expected, plasma TC and TG concentrations were lower on the PUFA diet than on TRANS or SAFA diets. Aortic intima macrophage infiltration, ABCA1 content, and lesion area on PUFA group were lower compared to TRANS and SAFA groups. Macrophages and ABCA1 markers did not co-localize in the atherosclerotic plaque, suggesting that different cell types were responsible for the ABCA1 expression in plaques. Compared to PUFA, TRANS and SAFA presented higher collagen content and necrotic cores in atherosclerotic plaques. In the artery wall, TC was lower on PUFA compared to TRANS group; free cholesterol was lower on PUFA compared to TRANS and SAFA; cholesteryl ester concentration did not vary amongst the groups. Plasma TNF-alpha concentration on PUFA and TRANS-fed mice was higher compared to SAFA. No difference was observed in IL-6 concentration amongst groups. Regarding the macrophage inflammatory response to LPS, TRANS and PUFA presented higher culture medium concentrations of IL-6 and TNF-alpha as compared to SAFA. The PUFA group showed the lowest amount of the anti-inflammatory marker IL-10 compared to TRANS and SAFA groups. In conclusion, PUFA intake prevented atherogenesis, even in a pro-inflammatory condition. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (similar to 150 Mb). Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi) were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia) and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas) compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST) indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pst system is a high-affinity inorganic phosphate transporter found in many bacterial species. Streptococcus mutans, the etiological agent of tooth decay, carries a single copy of the pst operon composed of six cistrons (pstS, pstC1, pstC, pstB, smu.1134 and phoU). Here, we show that deletion of pstS, encoding the phosphate-binding protein, reduces phosphate uptake and impairs cell growth, which can be restored upon enrichment of the medium with high concentrations of inorganic phosphate. The relevance of Pst for growth was also demonstrated in the wild-type strain treated with an anti-PstS antibody. Nevertheless, a reduced ability to bind to saliva-coated surfaces was observed, along with the reduction of extracellular polysaccharide production, although no difference on pH acidification was observed between mutant and wild-type strains. Taken together, the present data indicate that the S.similar to mutans Pst system participates in phosphate uptake, cell growth and expression of virulence-associated traits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quercetin is a potent anti-inflammatory flavonoid, but its capacity to modulate insulin sensitivity in obese insulin resistant conditions is unknown. This study investigated the effect of quercetin treatment upon insulin sensitivity of ob/ob mice and its potential molecular mechanisms. Obese ob/ob mice were treated with quercetin for 10 weeks, and L6 myotubes were treated with either palmitate or tumor necrosis factor-alpha (TNF alpha) plus quercetin. Cells and muscles were processed for analysis of glucose transporter 4 (GLUT4), TNF alpha and inducible nitric oxide synthase (iNOS) expression, and c-Jun N-terminal kinase (JNK) and inhibitor of nuclear factor-kappa B (NF-kappa B) kinase (I kappa K) phosphorylation. Myotubes were assayed for glucose uptake and NF-kappa B translocation. Chromatin immunoprecipitation assessed NF-kappa B binding to GLUT4 promoter. Quercetin treatment improved whole body insulin sensitivity by increasing GLUT4 expression and decreasing JNK phosphorylation, and TNF alpha and iNOS expression in skeletal muscle. Quercetin suppressed palmitate-induced upregulation of TNF alpha and iNOS and restored normal levels of GLUT4 in myotubes. In parallel, quercetin suppressed TNF alpha-induced reduction of glucose uptake in myotubes. Nuclear accumulation of NF-kappa B in myotubes and binding of NF-kappa B to GLUT4 promoter in muscles of ob/ob mice were also reduced by quercetin. We demonstrated that quercetin decreased the inflammatory status in skeletal muscle of obese mice and in L6 myotubes. This effect was followed by increased muscle GLUT4, with parallel improvement of insulin sensitivity. These results point out quercetin as a putative strategy to manage inflammatory-related insulin resistance. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer cachexia causes metabolic alterations with a marked effect on hepatic lipid metabolism. l-Carnitine modulates lipid metabolism and its supplementation has been proposed as a therapeutic strategy in many diseases. In the present study, the effects of l-carnitine supplementation on gene expression and on liver lipid metabolism-related proteins was investigated in cachectic tumour-bearing rats. Wistar rats were assigned to receive 1 g/kg of l-carnitine or saline. After 14 days, supplemented and control animals were assigned to a control (N), control supplemented with l-carnitine (CN), tumour-bearing Walker 256 carcinosarcoma (TB) and tumour-bearing supplemented with l-carnitine (CTB) group. The mRNA expression of carnitine palmitoyltransferase I and II (CPT I and II), microsomal triglyceride transfer protein (MTP), liver fatty acid-binding protein (L-FABP), fatty acid translocase (FAT/CD36), peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and organic cation transporter 2 (OCTN2) was assessed, and the maximal activity of CPT I and II in the liver measured, along with plasma and liver triacylglycerol content. The gene expression of MTP, and CPT I catalytic activity were reduced in TB, who also showed increased liver (150%) and plasma (3.3-fold) triacylglycerol content. l-Carnitine supplementation was able to restore these parameters back to control values (p < 0.05). These data show that l-carnitine preserves hepatic lipid metabolism in tumour-bearing animals, suggesting its supplementation to be of potential interest in cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emerging resistance to chloroquine (CQ) poses a major challenge for Plasmodium vivax malaria control, and nucleotide substitutions and copy number variation in the P. vivax multidrug resistance 1 (pvmdr-1) locus, which encodes a digestive vacuole membrane transporter, may modulate this phenotype. We describe patterns of genetic variation in pvmdr-1 alleles from Acre and Amazonas in northwestern Brazil, and compare then with those reported in other malaria-endemic regions. The pvmdr-1 mutation Y976F, which is associated with CQ resistance in Southeast Asia and Oceania, remains rare in northwestern Brazil (1.8%) and its prevalence mirrors that of CO resistance worldwide. Gene amplification of pvmdr-1, which is associated with mefloquine resistance but increased susceptibility to CO, remains relatively rare in northwestern Brazil (0.9%) and globally (< 4%), but became common (> 10%) in Tak Province, Thailand, possibly because of drug-mediated selection. The global database we have assembled provides a baseline for further studies of genetic variation in pvmdr-1 and drug resistance in P. vivax malaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose metabolism and insulin signaling disruptions in the brain have been proposed as a likely etiology of Alzheimer's disease. The aim of the present study was to investigate the time course of cognitive impairments induced by intracerebroventricular injection of streptozotocin (STZ) in rats and correlate them with the ensuing neurodegenerative process. Early and late effects of STZ were evaluated by using the reference and working memory versions of the Morris' water maze task and the evaluation of neurodegenerative markers by immunoblotting and the Fluoro-jade C histochemistry. The results revealed different types of behavioral and neurodegenerative responses, with distinct time courses. We observed an early disruption on the working memory as early as 3 h after STZ injections, which was followed by degenerative processes in the hippocampus at 1 and 15 days after STZ injections. Memory disruption increases over time and culminates with significant changes in amyloid-beta peptide and hyperphosphorylated Tau protein levels in distinct brain structures. These findings add information on the Alzheimer's disease-like STZ animal model and on the mechanisms underlying neurodegenerative processes. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-β-glucosidase) in mycelium cells; and ags (an α-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken together, these data show that several genes involved in cell organisation and ion metabolism/transport are expressed differentially along dimorphic transition. Hyper expression in yeast of the enzymes of sulphur metabolism reinforced that this metabolic pathway could be important for this process. Understanding these changes by functional analysis of such genes may lead to a better understanding of the infective process, thus providing new targets and strategies to control PCM.