975 resultados para Gravity equation
Resumo:
An analytical model is developed to predict the surface drag exerted by internal gravity waves on an isolated axisymmetric mountain over which there is a stratified flow with a velocity profile that varies relatively slowly with height. The model is linear with respect to the perturbations induced by the mountain, and solves the Taylor–Goldstein equation with variable coefficients using a Wentzel–Kramers–Brillouin (WKB) approximation, formally valid for high Richardson numbers, Ri. The WKB solution is extended to a higher order than in previous studies, enabling a rigorous treatment of the effects of shear and curvature of the wind profile on the surface drag. In the hydrostatic approximation, closed formulas for the drag are derived for generic wind profiles, where the relative magnitude of the corrections to the leading-order drag (valid for a constant wind profile) does not depend on the detailed shape of the orography. The drag is found to vary proportionally to Ri21, decreasing as Ri decreases for a wind that varies linearly with height, and increasing as Ri decreases for a wind that rotates with height maintaining its magnitude. In these two cases the surface drag is predicted to be aligned with the surface wind. When one of the wind components varies linearly with height and the other is constant, the surface drag is misaligned with the surface wind, especially for relatively small Ri. All these results are shown to be in fairly good agreement with numerical simulations of mesoscale nonhydrostatic models, for high and even moderate values of Ri.
Resumo:
Nearly all chemistry–climate models (CCMs) have a systematic bias of a delayed springtime breakdown of the Southern Hemisphere (SH) stratospheric polar vortex, implying insufficient stratospheric wave drag. In this study the Canadian Middle Atmosphere Model (CMAM) and the CMAM Data Assimilation System (CMAM-DAS) are used to investigate the cause of this bias. Zonal wind analysis increments from CMAMDAS reveal systematic negative values in the stratosphere near 608S in winter and early spring. These are interpreted as indicating a bias in the model physics, namely, missing gravity wave drag (GWD). The negative analysis increments remain at a nearly constant height during winter and descend as the vortex weakens, much like orographic GWD. This region is also where current orographic GWD parameterizations have a gap in wave drag, which is suggested to be unrealistic because of missing effects in those parameterizations. These findings motivate a pair of free-runningCMAMsimulations to assess the impact of extra orographicGWDat 608S. The control simulation exhibits the cold-pole bias and delayed vortex breakdown seen in the CCMs. In the simulation with extra GWD, the cold-pole bias is significantly reduced and the vortex breaks down earlier. Changes in resolved wave drag in the stratosphere also occur in response to the extra GWD, which reduce stratospheric SH polar-cap temperature biases in late spring and early summer. Reducing the dynamical biases, however, results in degraded Antarctic column ozone. This suggests that CCMs that obtain realistic column ozone in the presence of an overly strong and persistent vortex may be doing so through compensating errors.
Resumo:
The Canadian Middle Atmosphere Model is used to examine the sensitivity of simulated climate to conservation of momentum in gravity wave drag parameterization. Momentum conservation requires that the parameterized gravity wave momentum flux at the top of the model be zero and corresponds to the physical boundary condition of no momentum flux at the top of the atmosphere. Allowing momentum flux to escape the model domain violates momentum conservation. Here the impact of momentum conservation in two sets of model simulations is investigated. In the first set, the simulation of present-day climate for two model-lid height configurations, 0.001 and 10 hPa, which are identical below 10 hPa, is considered. The impact of momentum conservation on the climate with the model lid at 0.001 hPa is minimal, which is expected because of the small amount of gravity wave momentum flux reaching 0.001 hPa. When the lid is lowered to 10 hPa and momentum is conserved, there is only a modest impact on the climate in the Northern Hemisphere; however, the Southern Hemisphere climate is more adversely affected by the deflection of resolved waves near the model lid. When momentum is not conserved in the 10-hPa model the climate is further degraded in both hemispheres, particularly in winter at high latitudes, and the impact of momentum conservation extends all the way to the surface. In the second set of simulations, the impact of momentum conservation and model-lid height on the modeled response to ozone depletion in the Southern Hemisphere is considered, and it is found that the response can display significant sensitivity to both factors. In particular, both the lower-stratospheric polar temperature and surface responses are significantly altered when the lid is lowered, with the effect being most severe when momentum is not conserved. The implications with regard to the current round of Intergovernmental Panel on Climate Change model projections are discussed.
Resumo:
The robustness of the parameterized gravity wave response to an imposed radiative perturbation in the middle atmosphere is examined. When momentum is conserved and for reasonable gravity wave drag parameters, the response to a polar cooling induces polar downwelling above the region of the imposed cooling, with consequent adiabatic warming. This response is robust to changes in the gravity wave source spectrum, background flow, gravity wave breaking criterion, and model lid height. When momentum is not conserved, either in the formulation or in the implementation of the gravity wave drag parameterization, the response becomes sensitive to the above-mentioned factors—in particular to the model lid height. The spurious response resulting from nonconservation is found to be nonnegligible in terms of the total gravity wave drag–induced downwelling.
Resumo:
There is a current need to constrain the parameters of gravity wave drag (GWD) schemes in climate models using observational information instead of tuning them subjectively. In this work, an inverse technique is developed using data assimilation principles to estimate gravity wave parameters. Because mostGWDschemes assume instantaneous vertical propagation of gravity waves within a column, observations in a single column can be used to formulate a one-dimensional assimilation problem to estimate the unknown parameters. We define a cost function that measures the differences between the unresolved drag inferred from observations (referred to here as the ‘observed’ GWD) and the GWD calculated with a parametrisation scheme. The geometry of the cost function presents some difficulties, including multiple minima and ill-conditioning because of the non-independence of the gravity wave parameters. To overcome these difficulties we propose a genetic algorithm to minimize the cost function, which provides a robust parameter estimation over a broad range of prescribed ‘true’ parameters. When real experiments using an independent estimate of the ‘observed’ GWD are performed, physically unrealistic values of the parameters can result due to the non-independence of the parameters. However, by constraining one of the parameters to lie within a physically realistic range, this degeneracy is broken and the other parameters are also found to lie within physically realistic ranges. This argues for the essential physical self-consistency of the gravity wave scheme. A much better fit to the observed GWD at high latitudes is obtained when the parameters are allowed to vary with latitude. However, a close fit can be obtained either in the upper or the lower part of the profiles, but not in both at the same time. This result is a consequence of assuming an isotropic launch spectrum. The changes of sign in theGWDfound in the tropical lower stratosphere, which are associated with part of the quasi-biennial oscillation forcing, cannot be captured by the parametrisation with optimal parameters.
Resumo:
The behavior of the ensemble Kalman filter (EnKF) is examined in the context of a model that exhibits a nonlinear chaotic (slow) vortical mode coupled to a linear (fast) gravity wave of a given amplitude and frequency. It is shown that accurate recovery of both modes is enhanced when covariances between fast and slow normal-mode variables (which reflect the slaving relations inherent in balanced dynamics) are modeled correctly. More ensemble members are needed to recover the fast, linear gravity wave than the slow, vortical motion. Although the EnKF tends to diverge in the analysis of the gravity wave, the filter divergence is stable and does not lead to a great loss of accuracy. Consequently, provided the ensemble is large enough and observations are made that reflect both time scales, the EnKF is able to recover both time scales more accurately than optimal interpolation (OI), which uses a static error covariance matrix. For OI it is also found to be problematic to observe the state at a frequency that is a subharmonic of the gravity wave frequency, a problem that is in part overcome by the EnKF.However, error in themodeled gravity wave parameters can be detrimental to the performance of the EnKF and remove its implied advantages, suggesting that a modified algorithm or a method for accounting for model error is needed.
Resumo:
Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of fundamental issues are examined in detail, with the goal of providing a better understanding of the mechanism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave–driven QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear zones and the development of the QBO. An important difference between the schemes for the two types of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below. This is in contrast to the parameterization for the equatorial planetary waves in which there is downward propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is permitted.
Resumo:
This study examines the effect of combining equatorial planetary wave drag and gravity wave drag in a one-dimensional zonal mean model of the quasi-biennial oscillation (QBO). Several different combinations of planetary wave and gravity wave drag schemes are considered in the investigations, with the aim being to assess which aspects of the different schemes affect the nature of the modeled QBO. Results show that it is possible to generate a realistic-looking QBO with various combinations of drag from the two types of waves, but there are some constraints on the wave input spectra and amplitudes. For example, if the phase speeds of the gravity waves in the input spectrum are large relative to those of the equatorial planetary waves, critical level absorption of the equatorial planetary waves may occur. The resulting mean-wind oscillation, in that case, is driven almost exclusively by the gravity wave drag, with only a small contribution from the planetary waves at low levels. With an appropriate choice of wave input parameters, it is possible to obtain a QBO with a realistic period and to which both types of waves contribute. This is the regime in which the terrestrial QBO appears to reside. There may also be constraints on the initial strength of the wind shear, and these are similar to the constraints that apply when gravity wave drag is used without any planetary wave drag. In recent years, it has been observed that, in order to simulate the QBO accurately, general circulation models require parameterized gravity wave drag, in addition to the drag from resolved planetary-scale waves, and that even if the planetary wave amplitudes are incorrect, the gravity wave drag can be adjusted to compensate. This study provides a basis for knowing that such a compensation is possible.
Resumo:
It is shown how a renormalization technique, which is a variant of classical Krylov–Bogolyubov–Mitropol’skii averaging, can be used to obtain slow evolution equations for the vortical and inertia–gravity wave components of the dynamics in a rotating flow. The evolution equations for each component are obtained to second order in the Rossby number, and the nature of the coupling between the two is analyzed carefully. It is also shown how classical balance models such as quasigeostrophic dynamics and its second-order extension appear naturally as a special case of this renormalized system, thereby providing a rigorous basis for the slaving approach where only the fast variables are expanded. It is well known that these balance models correspond to a hypothetical slow manifold of the parent system; the method herein allows the determination of the dynamics in the neighborhood of such solutions. As a concrete illustration, a simple weak-wave model is used, although the method readily applies to more complex rotating fluid models such as the shallow-water, Boussinesq, primitive, and 3D Euler equations.
Resumo:
The BFKL equation and the kT-factorization theorem are used to obtain predictions for F2 in the small Bjo/rken-x region over a wide range of Q2. The dependence on the parameters, especially on those concerning the infrared region, is discussed. After a background fit to recent experimental data obtained at DESY HERA and at Fermilab (E665 experiment) we find that the predicted, almost Q2 independent BFKL slope λ≳0.5 appears to be too steep at lower Q2 values. Thus there seems to be a chance that future HERA data can distinguish between pure BFKL and conventional field theoretic renormalization group approaches. © 1995 The American Physical Society.
Resumo:
We consider the Dirichlet and Robin boundary value problems for the Helmholtz equation in a non-locally perturbed half-plane, modelling time harmonic acoustic scattering of an incident field by, respectively, sound-soft and impedance infinite rough surfaces.Recently proposed novel boundary integral equation formulations of these problems are discussed. It is usual in practical computations to truncate the infinite rough surface, solving a boundary integral equation on a finite section of the boundary, of length 2A, say. In the case of surfaces of small amplitude and slope we prove the stability and convergence as A→∞ of this approximation procedure. For surfaces of arbitrarily large amplitude and/or surface slope we prove stability and convergence of a modified finite section procedure in which the truncated boundary is ‘flattened’ in finite neighbourhoods of its two endpoints. Copyright © 2001 John Wiley & Sons, Ltd.
Resumo:
We prove unique existence of solution for the impedance (or third) boundary value problem for the Helmholtz equation in a half-plane with arbitrary L∞ boundary data. This problem is of interest as a model of outdoor sound propagation over inhomogeneous flat terrain and as a model of rough surface scattering. To formulate the problem and prove uniqueness of solution we introduce a novel radiation condition, a generalization of that used in plane wave scattering by one-dimensional diffraction gratings. To prove existence of solution and a limiting absorption principle we first reformulate the problem as an equivalent second kind boundary integral equation to which we apply a form of Fredholm alternative, utilizing recent results on the solvability of integral equations on the real line in [5].
Resumo:
We consider the Dirichlet boundary value problem for the Helmholtz equation in a non-locally perturbed half-plane, this problem arising in electromagnetic scattering by one-dimensional rough, perfectly conducting surfaces. We propose a new boundary integral equation formulation for this problem, utilizing the Green's function for an impedance half-plane in place of the standard fundamental solution. We show, at least for surfaces not differing too much from the flat boundary, that the integral equation is uniquely solvable in the space of bounded and continuous functions, and hence that, for a variety of incident fields including an incident plane wave, the boundary value problem for the scattered field has a unique solution satisfying the limiting absorption principle. Finally, a result of continuous dependence of the solution on the boundary shape is obtained.