10 resultados para Gravity equation
em CaltechTHESIS
Resumo:
The properties of capillary-gravity waves of permanent form on deep water are studied. Two different formulations to the problem are given. The theory of simple bifurcation is reviewed. For small amplitude waves a formal perturbation series is used. The Wilton ripple phenomenon is reexamined and shown to be associated with a bifurcation in which a wave of permanent form can double its period. It is shown further that Wilton's ripples are a special case of a more general phenomenon in which bifurcation into subharmonics and factorial higher harmonics can occur. Numerical procedures for the calculation of waves of finite amplitude are developed. Bifurcation and limit lines are calculated. Pure and combination waves are continued to maximum amplitude. It is found that the height is limited in all cases by the surface enclosing one or more bubbles. Results for the shape of gravity waves are obtained by solving an integra-differential equation. It is found that the family of solutions giving the waveheight or equivalent parameter has bifurcation points. Two bifurcation points and the branches emanating from them are found specifically, corresponding to a doubling and tripling of the wavelength. Solutions on the new branches are calculated.
Resumo:
Because the Earth’s upper mantle is inaccessible to us, in order to understand the chemical and physical processes that occur in the Earth’s interior we must rely on both experimental work and computational modeling. This thesis addresses both of these geochemical methods. In the first chapter, I develop an internally consistent comprehensive molar volume model for spinels in the oxide system FeO-MgO-Fe2O3-Cr2O3-Al2O3-TiO2. The model is compared to the current MELTS spinel model with a demonstration of the impact of the model difference on the estimated spinel-garnet lherzolite transition pressure. In the second chapter, I calibrate a molar volume model for cubic garnets in the system SiO2-Al2O3-TiO2-Fe2O3-Cr2O3-FeO-MnO-MgO-CaO-Na2O. I use the method of singular value analysis to calibrate excess volume of mixing parameters for the garnet model. The implications the model has for the density of the lithospheric mantle are explored. In the third chapter, I discuss the nuclear inelastic X-ray scattering (NRIXS) method, and present analysis of three orthopyroxene samples with different Fe contents. Longitudinal and shear wave velocities, elastic parameters, and other thermodynamic information are extracted from the raw NRIXS data.
Resumo:
In Part I, a method for finding solutions of certain diffusive dispersive nonlinear evolution equations is introduced. The method consists of a straightforward iteration procedure, applied to the equation as it stands (in most cases), which can be carried out to all terms, followed by a summation of the resulting infinite series, sometimes directly and other times in terms of traces of inverses of operators in an appropriate space.
We first illustrate our method with Burgers' and Thomas' equations, and show how it quickly leads to the Cole-Hopft transformation, which is known to linearize these equations.
We also apply this method to the Korteweg and de Vries, nonlinear (cubic) Schrödinger, Sine-Gordon, modified KdV and Boussinesq equations. In all these cases the multisoliton solutions are easily obtained and new expressions for some of them follow. More generally we show that the Marcenko integral equations, together with the inverse problem that originates them, follow naturally from our expressions.
Only solutions that are small in some sense (i.e., they tend to zero as the independent variable goes to ∞) are covered by our methods. However, by the study of the effect of writing the initial iterate u_1 = u_(1)(x,t) as a sum u_1 = ^∼/u_1 + ^≈/u_1 when we know the solution which results if u_1 = ^∼/u_1, we are led to expressions that describe the interaction of two arbitrary solutions, only one of which is small. This should not be confused with Backlund transformations and is more in the direction of performing the inverse scattering over an arbitrary “base” solution. Thus we are able to write expressions for the interaction of a cnoidal wave with a multisoliton in the case of the KdV equation; these expressions are somewhat different from the ones obtained by Wahlquist (1976). Similarly, we find multi-dark-pulse solutions and solutions describing the interaction of envelope-solitons with a uniform wave train in the case of the Schrodinger equation.
Other equations tractable by our method are presented. These include the following equations: Self-induced transparency, reduced Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher order and matrix-valued equations with nonscalar dispersion functions are also presented.
In Part II, the second Painleve transcendent is treated in conjunction with the similarity solutions of the Korteweg-de Vries equat ion and the modified Korteweg-de Vries equation.
Liquid silicate equation of state : using shock waves to understand the properties of the deep Earth
Resumo:
The equations of state (EOS) of several geologically important silicate liquids have been constrained via preheated shock wave techniques. Results on molten Fe2SiO4 (fayalite), Mg2SiO4 (forsterite), CaFeSi2O6 (hedenbergite), an equimolar mixture of CaAl2Si2O8-CaFeSi2O6 (anorthite-hedenbergite), and an equimolar mixture of CaAl2Si2O8-CaFeSi2O6-CaMgSi2O6(anorthite-hedenbergite-diopside) are presented. This work represents the first ever direct EOS measurements of an iron-bearing liquid or of a forsterite liquid at pressures relevant to the deep Earth (> 135 GPa). Additionally, revised EOS for molten CaMgSi2O6 (diopside), CaAl2Si2O8 (anorthite), and MgSiO3 (enstatite), which were previously determined by shock wave methods, are also presented.
The liquid EOS are incorporated into a model, which employs linear mixing of volumes to determine the density of compositionally intermediate liquids in the CaO-MgO-Al2O3-SiO2-FeO major element space. Liquid volumes are calculated for temperature and pressure conditions that are currently present at the core-mantle boundary or that may have occurred during differentiation of a fully molten mantle magma ocean.
The most significant implications of our results include: (1) a magma ocean of either chondrite or peridotite composition is less dense than its first crystallizing solid, which is not conducive to the formation of a basal mantle magma ocean, (2) the ambient mantle cannot produce a partial melt and an equilibrium residue sufficiently dense to form an ultralow velocity zone mush, and (3) due to the compositional dependence of Fe
Resumo:
Ultralow-velocity zones (ULVZs) are small structures at the base of the mantle characterized by sound velocities up to 30% lower than those of surrounding mantle. In this thesis, we propose that iron-rich (Mg,Fe)O plays a key role in the observed sound velocities, and argue that chemically distinct, iron-enriched structures are consistent with both the low sound velocities and the measured shapes of ULVZs.
Resumo:
Part I:
The earth's core is generally accepted to be composed primarily of iron, with an admixture of other elements. Because the outer core is observed not to transmit shear waves at seismic frequencies, it is known to be liquid or primarily liquid. A new equation of state is presented for liquid iron, in the form of parameters for the 4th order Birch-Murnaghan and Mie-Grüneisen equations of state. The parameters were constrained by a set of values for numerous properties compiled from the literature. A detailed theoretical model is used to constrain the P-T behavior of the heat capacity, based on recent advances in the understanding of the interatomic potentials for transition metals. At the reference pressure of 105 Pa and temperature of 1811 K (the normal melting point of Fe), the parameters are: ρ = 7037 kg/m3, KS0 = 110 GPa, KS' = 4.53, KS" = -.0337 GPa-1, and γ = 2.8, with γ α ρ-1.17. Comparison of the properties predicted by this model with the earth model PREM indicates that the outer core is 8 to 10 % less dense than pure liquid Fe at the same conditions. The inner core is also found to be 3 to 5% less dense than pure liquid Fe, supporting the idea of a partially molten inner core. The density deficit of the outer core implies that the elements dissolved in the liquid Fe are predominantly of lower atomic weight than Fe. Of the candidate light elements favored by researchers, only sulfur readily dissolves into Fe at low pressure, which means that this element was almost certainly concentrated in the core at early times. New melting data are presented for FeS and FeS2 which indicate that the FeS2 is the S-hearing liquidus solid phase at inner core pressures. Consideration of the requirement that the inner core boundary be observable by seismological means and the freezing behavior of solutions leads to the possibility that the outer core may contain a significant fraction of solid material. It is found that convection in the outer core is not hindered if the solid particles are entrained in the fluid flow. This model for a core of Fe and S admits temperatures in the range 3450K to 4200K at the top of the core. An all liquid Fe-S outer core would require a temperature of about 4900 K at the top of the core.
Part II.
The abundance of uses for organic compounds in the modern world results in many applications in which these materials are subjected to high pressures. This leads to the desire to be able to describe the behavior of these materials under such conditions. Unfortunately, the number of compounds is much greater than the number of experimental data available for many of the important properties. In the past, one approach that has worked well is the calculation of appropriate properties by summing the contributions from the organic functional groups making up molecules of the compounds in question. A new set of group contributions for the molar volume, volume thermal expansivity, heat capacity, and the Rao function is presented for functional groups containing C, H, and O. This set is, in most cases, limited in application to low molecular liquids. A new technique for the calculation of the pressure derivative of the bulk modulus is also presented. Comparison with data indicates that the presented technique works very well for most low molecular hydrocarbon liquids and somewhat less well for oxygen-bearing compounds. A similar comparison of previous results for polymers indicates that the existing tabulations of group contributions for this class of materials is in need of revision. There is also evidence that the Rao function contributions for polymers and low molecular compounds are somewhat different.
Resumo:
We study some aspects of conformal field theory, wormhole physics and two-dimensional random surfaces. Inspite of being rather different, these topics serve as examples of the issues that are involved, both at high and low energy scales, in formulating a quantum theory of gravity. In conformal field theory we show that fusion and braiding properties can be used to determine the operator product coefficients of the non-diagonal Wess-Zumino-Witten models. In wormhole physics we show how Coleman's proposed probability distribution would result in wormholes determining the value of θQCD. We attempt such a calculation and find the most probable value of θQCD to be π. This hints at a potential conflict with nature. In random surfaces we explore the behaviour of conformal field theories coupled to gravity and calculate some partition functions and correlation functions. Our results throw some light on the transition that is believed to occur when the central charge of the matter theory gets larger than one.
Resumo:
(1) Equation of State of Komatiite
The equation of state (EOS) of a molten komatiite (27 wt% MgO) was detennined in the 5 to 36 GPa pressure range via shock wave compression from 1550°C and 0 bar. Shock wave velocity, US, and particle velocity, UP, in km/s follow the linear relationship US = 3.13(±0.03) + 1.47(±0.03) UP. Based on a calculated density at 1550°C, 0 bar of 2.745±0.005 glee, this US-UP relationship gives the isentropic bulk modulus KS = 27.0 ± 0.6 GPa, and its first and second isentropic pressure derivatives, K'S = 4.9 ± 0.1 and K"S = -0.109 ± 0.003 GPa-1.
The calculated liquidus compression curve agrees within error with the static compression results of Agee and Walker [1988a] to 6 GPa. We detennine that olivine (FO94) will be neutrally buoyant in komatiitic melt of the composition we studied near 8.2 GPa. Clinopyroxene would also be neutrally buoyant near this pressure. Liquidus garnet-majorite may be less dense than this komatiitic liquid in the 20-24 GPa interval, however pyropic-garnet and perovskite phases are denser than this komatiitic liquid in their respective liquidus pressure intervals to 36 GPa. Liquidus perovskite may be neutrally buoyant near 70 GPa.
At 40 GPa, the density of shock-compressed molten komatiite would be approximately equal to the calculated density of an equivalent mixture of dense solid oxide components. This observation supports the model of Rigden et al. [1989] for compressibilities of liquid oxide components. Using their theoretical EOS for liquid forsterite and fayalite, we calculate the densities of a spectrum of melts from basaltic through peridotitic that are related to the experimentally studied komatiitic liquid by addition or subtraction of olivine. At low pressure, olivine fractionation lowers the density of basic magmas, but above 14 GPa this trend is reversed. All of these basic to ultrabasic liquids are predicted to have similar densities at 14 GPa, and this density is approximately equal to the bulk (PREM) mantle. This suggests that melts derived from a peridotitic mantle may be inhibited from ascending from depths greater than 400 km.
The EOS of ultrabasic magmas was used to model adiabatic melting in a peridotitic mantle. If komatiites are formed by >15% partial melting of a peridotitic mantle, then komatiites generated by adiabatic melting come from source regions in the lower transition zone (≈500-670 km) or the lower mantle (>670 km). The great depth of incipient melting implied by this model, and the melt density constraint mentioned above, suggest that komatiitic volcanism may be gravitationally hindered. Although komatiitic magmas are thought to separate from their coexisting crystals at a temperature =200°C greater than that for modern MORBs, their ultimate sources are predicted to be diapirs that, if adiabatically decompressed from initially solid mantle, were more than 700°C hotter than the sources of MORBs and derived from great depth.
We considered the evolution of an initially molten mantle, i.e., a magma ocean. Our model considers the thermal structure of the magma ocean, density constraints on crystal segregation, and approximate phase relationships for a nominally chondritic mantle. Crystallization will begin at the core-mantle boundary. Perovskite buoyancy at > 70 GPa may lead to a compositionally stratified lower mantle with iron-enriched mangesiowiistite content increasing with depth. The upper mantle may be depleted in perovskite components. Olivine neutral buoyancy may lead to the formation of a dunite septum in the upper mantle, partitioning the ocean into upper and lower reservoirs, but this septum must be permeable.
(2) Viscosity Measurement with Shock Waves
We have examined in detail the analytical method for measuring shear viscosity from the decay of perturbations on a corrugated shock front The relevance of initial conditions, finite shock amplitude, bulk viscosity, and the sensitivity of the measurements to the shock boundary conditions are discussed. The validity of the viscous perturbation approach is examined by numerically solving the second-order Navier-Stokes equations. These numerical experiments indicate that shock instabilities may occur even when the Kontorovich-D'yakov stability criteria are satisfied. The experimental results for water at 15 GPa are discussed, and it is suggested that the large effective viscosity determined by this method may reflect the existence of ice VII on the Rayleigh path of the Hugoniot This interpretation reconciles the experimental results with estimates and measurements obtained by other means, and is consistent with the relationship of the Hugoniot with the phase diagram for water. Sound waves are generated at 4.8 MHz at in the water experiments at 15 GPa. The existence of anelastic absorption modes near this frequency would also lead to large effective viscosity estimates.
(3) Equation of State of Molybdenum at 1400°C
Shock compression data to 96 GPa for pure molybdenum, initially heated to 1400°C, are presented. Finite strain analysis of the data gives a bulk modulus at 1400°C, K'S. of 244±2 GPa and its pressure derivative, K'OS of 4. A fit of shock velocity to particle velocity gives the coefficients of US = CO+S UP to be CO = 4.77±0.06 km/s and S = 1.43±0.05. From the zero pressure sound speed, CO, a bulk modulus of 232±6 GPa is calculated that is consistent with extrapolation of ultrasonic elasticity measurements. The temperature derivative of the bulk modulus at zero pressure, θKOSθT|P, is approximately -0.012 GPa/K. A thermodynamic model is used to show that the thermodynamic Grüneisen parameter is proportional to the density and independent of temperature. The Mie-Grüneisen equation of state adequately describes the high temperature behavior of molybdenum under the present range of shock loading conditions.
Resumo:
The problem considered is that of minimizing the drag of a symmetric plate in infinite cavity flow under the constraints of fixed arclength and fixed chord. The flow is assumed to be steady, irrotational, and incompressible. The effects of gravity and viscosity are ignored.
Using complex variables, expressions for the drag, arclength, and chord, are derived in terms of two hodograph variables, Γ (the logarithm of the speed) and β (the flow angle), and two real parameters, a magnification factor and a parameter which determines how much of the plate is a free-streamline.
Two methods are employed for optimization:
(1) The parameter method. Γ and β are expanded in finite orthogonal series of N terms. Optimization is performed with respect to the N coefficients in these series and the magnification and free-streamline parameters. This method is carried out for the case N = 1 and minimum drag profiles and drag coefficients are found for all values of the ratio of arclength to chord.
(2) The variational method. A variational calculus method for minimizing integral functionals of a function and its finite Hilbert transform is introduced, This method is applied to functionals of quadratic form and a necessary condition for the existence of a minimum solution is derived. The variational method is applied to the minimum drag problem and a nonlinear integral equation is derived but not solved.
Resumo:
The equations of relativistic, perfect-fluid hydrodynamics are cast in Eulerian form using six scalar "velocity-potential" fields, each of which has an equation of evolution. These equations determine the motion of the fluid through the equation
Uʋ=µ-1 (ø,ʋ + αβ,ʋ + ƟS,ʋ).
Einstein's equations and the velocity-potential hydrodynamical equations follow from a variational principle whose action is
I = (R + 16π p) (-g)1/2 d4x,
where R is the scalar curvature of spacetime and p is the pressure of the fluid. These equations are also cast into Hamiltonian form, with Hamiltonian density –T00 (-goo)-1/2.
The second variation of the action is used as the Lagrangian governing the evolution of small perturbations of differentially rotating stellar models. In Newtonian gravity this leads to linear dynamical stability criteria already known. In general relativity it leads to a new sufficient condition for the stability of such models against arbitrary perturbations.
By introducing three scalar fields defined by
ρ ᵴ = ∇λ + ∇x(xi + ∇xɣi)
(where ᵴ is the vector displacement of the perturbed fluid element, ρ is the mass-density, and i, is an arbitrary vector), the Newtonian stability criteria are greatly simplified for the purpose of practical applications. The relativistic stability criterion is not yet in a form that permits practical calculations, but ways to place it in such a form are discussed.