954 resultados para Gram-negative bacteria.
Resumo:
The β-proteobacterium Chromobacterium violaceum is a Gram-negative, free-living, saprophytic and opportunistic pathogen that inhabits tropical and subtropical ecosystems among them, in soil and water of the Amazon. It has great biotechnological potential, and because of this potential, its genome was completely sequenced in 2003. Genome analysis showed that this bacterium has several genes with functions related to the ability to survive under different kinds of environmental stresses. In order to understand the physiological response of C. violaceum under oxidative stress, we applied the tool of shotgun proteomics. Thus, colonies of C. violaceum ATCC 12472 were grown in the presence and absence of 8 mM H2O2 for two hours, total proteins were extracted from bacteria, subjected to SDS-PAGE, stained and hydrolysed. The tryptic peptides generated were subjected to a linear-liquid chromatography (LC) followed by mass spectrometer (LTQ-XL-Orbitrap) to obtain quantitative and qualitative data. A shotgun proteomics allows to compare directly in complex samples, differential expression of proteins and found that in C. Violaceum, 131 proteins are expressed exclusively in the control condition, 177 proteins began to be expressed under oxidative stress and 1175 proteins have expression in both conditions. The results showed that, under the condition of oxidative stress, this bacterium changes its metabolism by increasing the expression of proteins capable of combating oxidative stress and decreasing the expression of proteins related processes bacterial growth and catabolism (transcription, translation, carbon metabolism and fatty acids). A tool with of proteomics as an approach of integrative biology provided an overview of the metabolic pathways involved in the response of C. violaceum to oxidative stress, as well as significantly amplified understanding physiological response to environmental stress. Biochemical and "in silico" assays with the hypothetical ORF CV_0868 found that this is part of an operon. Phylogenetic analysis of superoxide dismutase, protein belonging to the operon also showed that the gene is duplicated in genome of C. violaceum and the second copy was acquired through a horizontal transfer event. Possibly, not only the SOD gene but also all genes comprising this operon were obtained in the same manner. It was concluded that C. violaceum has complex, efficient and versatile mechanisms in oxidative stress response
Resumo:
Surgical site infections (SSIs) remain a major clinical problem in terms of morbidity, mortality, time spent in hospital and overall direct and indirect costs. Objectives: To measure the prevalence of the SSI, by type of surgery and microbiologically characterization, in adult patients undergoing surgery during 2015 at a public hospital in northern Portugal. Methods: A prospective study, attended by 609 adult patients, undergoing surgery. The sociodemographic and clinical data of the population, as well as the surgical procedure and microbiological study were analyzed using Microsoft Access 2013. Results: In the sample of 609 adults undergoing surgery, it was found that 62.89% of surgical wound were cleaned, 15.8% were clean-contaminated, 8.70% were contaminated and 9.36% infected. About 62.52% of the intervened patients had antibiotic prophylaxis prior to surgery. Out of all surgeries, 33.3% were laparoscopic. The percentage of SSI was 5.74%; In these positive cases, only 3.61% was identiied the responsible bacteria. The urgent surgeries have more infections when compared to the programmed ones. In colon surgery the number of infections was 60% after cholecystectomy (22.86%). In hernioplasty, infection occurred in only 2.86% of the patients. The most isolated bacteria was Escherichia coli with 59%, in which 30% are -producing-lactamases of extended spectrum, followed by Pseudomonas aeruginosa (13.6%) and Serratia marcescens (13.6%). The mortality rate was 14.8%. Pseudomonas aeruginosa was isolated in 3 of 4 patients who died. Conclusions: The most microorganisms belong to the group of Gram-negative and are usually linked to infections associated with health care.
Resumo:
La piscirickettsiosis es una enfermedad contagiosa sistémica de los peces teleósteos cuyo agente causal es Piscirickettsia salmonis, una bacteria gram negativa intracelular facultativa. Esta enfermedad se ha descrito esporádicamente en distintas áreas geográficas y especies de peces en el mundo, pero es endémica y particularmente severa en salmónidos criados en agua de mar en Chile. En esta tesis se investigaron algunos aspectos de la patogénesis de esta enfermedad, estudiándose la infectividad de P. salmonis, tanto in vitro como in vivo, y buscándose además evidencias de la capacidad de secretar exotoxinas por parte de esta bacteria. Los ensayos de infectividad en células CHSE-214, procedentes de embrión de salmón chinook (Oncorhynchus tshawytscha), mostraron que existe una rápida adherencia de la bacteria a la superficie de la membrana plasmática (≤ 5 min posinoculación) seguida de su incorporación al citoplasma de estas células, proceso que ocurre entre las 3 y las 6 h posinoculación. Por su parte, el estudio de infectividad in vivo, que se realizó en trucha arcoiris (O. mykiss), reveló que este proceso comprende tres etapas principales: (i) una fase de rápida adhesión a células epiteliales principalmente de piel y branquias, pero también del canal alimentario; (ii) una invasión progresiva desde los sitios de entrada hacia tejidos más profundos hasta alcanzar el torrente sanguíneo y; (iii) una rápida diseminación vía hematógena para alcanzar virtualmente todos los tejidos corporales. Finalmente, se demostró que P. salmonis puede secretar exotoxinas termolábiles que tienen un efecto citotóxico selectivo según la célula blanco expuesta y que, probablemente, son parte de los factores de virulencia involucrados en la patogénesis de la piscirickettsiosis.
Resumo:
Background: The microflora hypothesis may be the underlying explanation for the growth of inflammatory disease. In addition to many known affecting factors, knowing the gut microbiota of healthy newborns can help to understand the gut immunity and modulate it. Objectives: This study examined the microbiota of healthy newborns from urban regions. Patients and Methods: We enrolled 128 full-term newborns, born at Seoul St. Mary and St. Paul hospital from January 2009 to February 2010. All 143 samples of feces were cultivated in six culture plates to determine the amounts of total bacteria, anaerobes, gram-positive bacteria, coliforms, lactobacilli, and bifidobacteria. The samples were evaluated with a bivariate correlation between coliforms and lactobacilli. Terminal restriction fragment length polymorphism (T-RFLP) analysis with HhaI and MspI and a clustering analysis were performed for determination of diversity. Results: Bacteria were cultured in 61.5% of feces in the following order: anaerobes, gram-positive bacteria, lactobacilli, coliform, and bifidobacteria. The growth of total bacteria and lactobacilli increased in feces defecated after 24 hours of birth (P < 0.001, P = 0.008) and anaerobes decreased (P = 0.003). A negative correlation between the growth of lactobacilli and coliforms was found (r = -463, P < 0.001). Conclusions: This study confirms that bacterial colonization of healthy newborns born in cities is non-sterile, but has early diversification and inter-individuality.
Resumo:
Flavobacterium columnare é o agente etiológico da columnariose em peixes de água doce, ocasionando enfermidade na pele e nas brânquias, provocando freqüentemente um grande número de mortalidade. O objetivo deste estudo foi o isolamento e a caracterização de Flavobacterium columnare em peixes tropicais no Brasil. Piracanjuba (Brycon orbignyanus), pacu (Piaractus mesopotamicus), tambaqui (Colossoma macropomum) e cascudo (Hypostomus plecostomus) foram examinados externamente com relação a sinais característicos de columnariose, como manchas acinzentadas na cabeça, região dorsal e pedúnculo caudal dos peixes. A amostragem compreendeu a coleta de 50 exemplares de peixes, representando as quatro diferentes espécies escolhidas para este estudo. Amostras para o isolamento foram obtidas através de raspado com swab estéril das lesões e do rim dos peixes clinicamente diagnosticados como acometidos por columnarios e imediatamente semeados em meios de culturas artificiais (líquido e sólido) próprios para o estudo de Flavobacterium segundo Carlson e Pacha (1968). No meio líquido, houve o desenvolvimento de microrganismos que observados em gota pendente apresentaram a forma de bacilos finos, longos, móveis por deslizamento. Através da coloração de Gram, apresentaram morfologia de bacilos finos, Gram negativos, agrupados em colunas. em meio sólido, as colônias eram pequenas, cinza-amareladas, com borda em forma de raiz. No total, foram obtidos quatro isolamentos: 01 cepa de Brycon orbignyanus; 01 cepa de Piaractus mesopotamicus; 01 cepa de Colossoma macropomum; e 01 cepa de Hypostomus plecostomus. A caracterização bioquímica das amostras, como absorção do vermelho Congo, produção de flexirrubina, produção de H2S e redução do nitrato, sugere que os isolamentos poderiam ser classificados como Flavobacterium columnare.
Resumo:
BACKGROUND Integrons are found in hundreds of environmental bacterial species, but are mainly known as the agents responsible for the capture and spread of antibiotic-resistance determinants between Gram-negative pathogens. The SOS response is a regulatory network under control of the repressor protein LexA targeted at addressing DNA damage, thus promoting genetic variation in times of stress. We recently reported a direct link between the SOS response and the expression of integron integrases in Vibrio cholerae and a plasmid-borne class 1 mobile integron. SOS regulation enhances cassette swapping and capture in stressful conditions, while freezing the integron in steady environments. We conducted a systematic study of available integron integrase promoter sequences to analyze the extent of this relationship across the Bacteria domain. RESULTS Our results showed that LexA controls the expression of a large fraction of integron integrases by binding to Escherichia coli-like LexA binding sites. In addition, the results provide experimental validation of LexA control of the integrase gene for another Vibrio chromosomal integron and for a multiresistance plasmid harboring two integrons. There was a significant correlation between lack of LexA control and predicted inactivation of integrase genes, even though experimental evidence also indicates that LexA regulation may be lost to enhance expression of integron cassettes. CONCLUSIONS Ancestral-state reconstruction on an integron integrase phylogeny led us to conclude that the ancestral integron was already regulated by LexA. The data also indicated that SOS regulation has been actively preserved in mobile integrons and large chromosomal integrons, suggesting that unregulated integrase activity is selected against. Nonetheless, additional adaptations have probably arisen to cope with unregulated integrase activity. Identifying them may be fundamental in deciphering the uneven distribution of integrons in the Bacteria domain.
Resumo:
Introducción: La rápida detección e identificación bacteriana es fundamental para el manejo de los pacientes críticos que presentan una patología infecciosa, esto requiere de métodos rápidos para el inicio de un correcto tratamiento. En Colombia se usan pruebas microbiología convencional. No hay estudios de espectrofotometría de masas en análisis de muestras de pacientes críticos en Colombia. Objetivo general: Describir la experiencia del análisis microbiológico mediante la tecnología MALDI-TOF MS en muestras tomadas en la Fundación Santa Fe de Bogotá. Materiales y Métodos: Entre junio y julio de 2013, se analizaron 147 aislamientos bacterianos de muestras clínicas, las cuales fueron procesadas previamente por medio del sistema VITEK II. Los aislamientos correspondieron a 88 hemocultivos (60%), 28 urocultivos (19%), y otros cultivos 31 (21%). Resultados: Se obtuvieron 147 aislamientos con identificación adecuada a nivel de género y/o especie así: en el 88.4% (130 muestras) a nivel de género y especie, con una concordancia del 100% comparado con el sistema VITEK II. El porcentaje de identificación fue de 66% en el grupo de bacilos gram negativos no fermentadores, 96% en enterobacterias, 100% en gérmenes fastidiosos, 92% en cocos gram positivos, 100% bacilos gram negativos móviles y 100% en levaduras. No se encontró ninguna concordancia en bacilos gram positivos y gérmenes del genero Aggregatibacter. Conclusiones: El MALDI-TOF es una prueba rápida para la identificación microbiológica de género y especie que concuerda con los resultados obtenidos de manera convencional. Faltan estudios para hacer del MALDI-TOF MS la prueba oro en identificación de gérmenes.
Resumo:
Bartonella species are blood-borne, re-emerging organisms, capable of causing prolonged infection with diverse disease manifestations, from asymptomatic bacteremia to chronic debilitating disease and death. This pathogen can survive for over a month in stored blood. However, its prevalence among blood donors is unknown, and screening of blood supplies for this pathogen is not routinely performed. We investigated Bartonella spp. prevalence in 500 blood donors from Campinas, Brazil, based on a cross-sectional design. Blood samples were inoculated into an enrichment liquid growth medium and sub-inoculated onto blood agar. Liquid culture samples and Gram-negative isolates were tested using a genus specific ITS PCR with amplicons sequenced for species identification. Bartonella henselae and Bartonella quintana antibodies were assayed by indirect immunofluorescence. B. henselae was isolated from six donors (1.2%). Sixteen donors (3.2%) were Bartonella-PCR positive after culture in liquid or on solid media, with 15 donors infected with B. henselae and one donor infected with Bartonella clarridgeiae. Antibodies against B. henselae or B. quintana were found in 16% and 32% of 500 blood donors, respectively. Serology was not associated with infection, with only three of 16 Bartonella-infected subjects seropositive for B. henselae or B. quintana. Bartonella DNA was present in the bloodstream of approximately one out of 30 donors from a major blood bank in South America. Negative serology does not rule out Bartonella spp. infection in healthy subjects. Using a combination of liquid and solid cultures, PCR, and DNA sequencing, this study documents for the first time that Bartonella spp. bacteremia occurs in asymptomatic blood donors. Our findings support further evaluation of Bartonella spp. transmission which can occur through blood transfusions.
Resumo:
INTRODUCTION: Excessive group 2 carbapenem use may result in decreased bacterial susceptibility. OBJECTIVE: We evaluated the impact of a carbapenem stewardship program, restricting imipenem and meropenem use. METHODS: Ertapenem was mandated for ESBL-producing Enterobacteriaceae infections in the absence of non-fermenting Gram-negative bacilli (GNB) from April 2006 to March 2008. Group 2 carbapenems were restricted for use against GNB infections susceptible only to carbapenems and suspected GNB infections in unstable patients. Cumulative susceptibility tests were done for nosocomial pathogens before and after restriction using Clinical and Laboratory Standards Institute (CLSI) guide-lines.Vitek System or conventional identification methods were performed and susceptibility testing done by disk diffusion according to CLSI.Antibiotic consumption (t-test) and susceptibilities (McNemar's test) were determined. RESULTS: The defined daily doses (DDD) of group 2 carbapenems declined from 61.1 to 48.7 DDD/1,000 patient-days two years after ertapenem introduction (p = 0.027). Mean ertapenem consumption after restriction was 31.5 DDD/1,000 patient-days. Following ertapenem introduction no significant susceptibility changes were noticed among Gram-positive cocci. The most prevalent GNB were P. aeruginosa, Klebsiella pneumoniae, and Acinetobacter spp. There was no change in P. aeruginosa susceptibility to carbapenems. Significantly improved P. aeruginosa and K. pneumoniae ciprofloxacin susceptibilities were observed, perhaps due to decreased group 2 carbapenem use. K. pneumoniae susceptibility to trimethoprim-sulfamethoxazole improved. CONCLUSION: Preferential use of ertapenem resulted in reduced group 2 carbapenem use, with a positive impact on P. aeruginosa and K. pneumoniae susceptibility.
Resumo:
As a part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.), Gram-positive and Gram-negative bacterial isolates were collected from 33 centers in Latin America (centers in Argentina, Brazil, Chile, Colombia, Guatemala, Honduras, Jamaica, Mexico, Panama, Puerto Rico, and Venezuela) from January 2004 to September 2007. Argentina and Mexico were the greatest contributors of isolates to this study. Susceptibilities were determined according to Clinical Laboratory Standards Institute guidelines. Resistance levels were high for most key organisms across Latin America: 48.3% of Staphylococcus aureus isolates were methicillin-resistant while 21.4% of Acinetobacter spp. isolates were imipenem-resistant. Extended-spectrum β-lactamase were reported in 36.7% of Klebsiella pneumoniae and 20.8% of E. coli isolates. Tigecycline was the most active agent against Gram-positive isolates. Tigecycline was also highly active against all Gram-negative organisms, with the exception of Pseuodomonas aeruginosa, against which piperacillin-tazobactam was the most active agent tested (79.3% of isolates susceptible). The in vitro activity of tigecycline against both Gram-positive and Gram-negative isolates indicates that it may be an useful tool for the treatment of nosocomial infections, even those caused by organisms that are resistant to other antibacterial agents.
Resumo:
In this work, different reactions in vitro between an environmental bacterial isolate and fungal species were related. The Gram-positive bacteria had terminal and subterminal endospores, presented metabolic characteristics of mesophilic and acidophilic growth, halotolerance, positive to nitrate reduction and enzyme production, as caseinase and catalase. The analysis of partial sequences containing 400 to 700 bases of the 16S ribosomal RNA gene showed identity with the genus Bacillus. However, its identity as B. subtilis was confirmed after analyses of the rpoB, gyrA, and 16S rRNA near-full-length sequences. Strong inhibitory activity of environmental microorganisms, such as Penicillium sp, Aspergillus flavus, A. niger, and phytopathogens, such as Colletotrichum sp, Alternaria alternata, Fusarium solani and F. oxysporum f.sp vasinfectum, was shown on co-cultures with B. subtilis strain, particularly on Sabouraud dextrose agar (SDA) and DNase media. Red and red-ochre color pigments, probably phaeomelanins, were secreted by A. alternata and A. niger respectively after seven days of co-culture.
Resumo:
Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome composition. To better evaluate the recent evolution of the X. fastidiosa chromosome backbone among distinct pathovars, the number and location of prophage-like regions on two finished genomes (9a5c and Temecula1), and in two candidate molecules (Ann1 and Dixon) were assessed. Based on comparative best bidirectional hit analyses, the majority (51%) of the predicted genes in the X. fastidiosa prophage-like regions are related to structural phage genes belonging to the Siphoviridae family. Electron micrograph reveals the existence of putative viral particles with similar morphology to lambda phages in the bacterial cell in planta. Moreover, analysis of microarray data indicates that 9a5c strain cultivated under stress conditions presents enhanced expression of phage anti-repressor genes, suggesting switches from lysogenic to lytic cycle of phages under stress-induced situations. Furthermore, virulence-associated proteins and toxins are found within these prophage-like elements, thus suggesting an important role in host adaptation. Finally, clustering analyses of phage integrase genes based on multiple alignment patterns reveal they group in five lineages, all possessing a tyrosine recombinase catalytic domain, and phylogenetically close to other integrases found in phages that are genetic mosaics and able to perform generalized and specialized transduction. Integration sites and tRNA association is also evidenced. In summary, we present comparative and experimental evidence supporting the association and contribution of phage activity on the differentiation of Xylella genomes.
Resumo:
Background: Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results: In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a sigma(54)-dependent manner. A more complete picture of the sigma(54) regulon was achieved by combining the transcriptome data with an in silico search for potential sigma(54)-dependent promoters, using a position weight matrix approach. One of these sigma(54)-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by primer extension assays, confirming that this gene has a sigma(54)-dependent promoter. Conclusions: Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the sigma(54) regulon.
Resumo:
Mycoplasma suis, the causative agent of porcine infectious anemia, has never been cultured in vitro and mechanisms by which it causes disease are poorly understood. Thus, the objective herein was to use whole genome sequencing and analysis of M. suis to define pathogenicity mechanisms and biochemical pathways. M. suis was harvested from the blood of an experimentally infected pig. Following DNA extraction and construction of a paired end library, whole-genome sequencing was performed using GS-FLX (454) and Titanium chemistry. Reads on paired-end constructs were assembled using GS De Novo Assembler and gaps closed by primer walking; assembly was validated by PFGE. Glimmer and Manatee Annotation Engine were used to predict and annotate protein-coding sequences (CDS). The M. suis genome consists of a single, 742,431 bp chromosome with low G+C content of 31.1%. A total of 844 CDS, 3 single copies, unlinked rRNA genes and 32 tRNAs were identified. Gene homologies and GC skew graph show that M. suis has a typical Mollicutes oriC. The predicted metabolic pathway is concise, showing evidence of adaptation to blood environment. M. suis is a glycolytic species, obtaining energy through sugars fermentation and ATP-synthase. The pentose-phosphate pathway, metabolism of cofactors and vitamins, pyruvate dehydrogenase and NAD(+) kinase are missing. Thus, ribose, NADH, NADPH and coenzyme A are possibly essential for its growth. M. suis can generate purines from hypoxanthine, which is secreted by RBCs, and cytidine nucleotides from uracil. Toxins orthologs were not identified. We suggest that M. suis may cause disease by scavenging and competing for host nutrients, leading to decreased life-span of RBCs. In summary, genome analysis shows that M. suis is dependent on host cell metabolism and this characteristic is likely to be linked to its pathogenicity. The prediction of essential nutrients will aid the development of in vitro cultivation systems.
Resumo:
The aim of this study was to investigate the presence and prevalence of bla(TEM), bla(SHV), and bla(CTX-M) and bla(GES)-like genes, responsible for extended spectrum beta-lactamases (ESBLs) production in clinical isolates of Klebsiella pneumoniae collected from a Brazilian tertiary care hospital. Sixty-five ESBL producing K. pneumoniae isolates, collected between 2005 and 2007, were screened by polymerase chain reaction (PCR). Identification of bla genes was achieved by sequencing. Genotyping of ESBL producing K. pneumoniae was performed by the enterobacterial repetitive intergenic consensus-PCR with cluster analysis by the Dice coefficient. The presence of genes encoding ESBLs was confirmed in 59/65 (90.8%) isolates, comprising 20 bla(CTX-M-2), 14 bla(CTX-M-59), 12 bla(CTX-M-15), 9 bla(SHV-12), 1 bla(SHV-2), 1 bla(SHV-2a), 1 bla(SHV-5), and 1 bla(SHV-31) genes. The ESBL genes bla(SHV-12), bla(SHV-31), and bla(CTX-M-15), and the chromosome-encoded SHV-type beta-lactamase capable of hydrolyzing imipenem were detected in Brazil for the first time. The analysis of the enterobacterial repetitive intergenic consensus-PCR band patterns revealed a high rate of multiclonal bla(CTX-M) carrying K. pneumoniae isolates (70.8%), suggesting that dissemination of encoding plasmids is likely to be the major cause of the high prevalence of these genes among the K. pneumoniae isolates considered in this study.