920 resultados para Grain
Resumo:
The Dansgaard-Oeschger oscillations and Heinrich events described in North Atlantic sediments and Greenland ice are expressed in the climate of the tropics, for example, as documented in Arabian Sea sediments. Given the strength of this teleconnection, we seek to reconstruct its range of environmental impacts. We present geochemical and sedimentological data from core SO130-289KL from the Indus submarine slope spanning the last ~ 80 kyr. Elemental and grain size analyses consistently indicate that interstadials are characterized by an increased contribution of fluvial suspension from the Indus River. In contrast, stadials are characterized by an increased contribution of aeolian dust from the Arabian Peninsula. Decadal-scale shifts at climate transitions, such as onsets of interstadials, were coeval with changes in productivity-related proxies. Heinrich events stand out as especially dry and dusty events, indicating a dramatically weakened Indian summer monsoon, potentially increased winter monsoon circulation, and increased aridity on the Arabian Peninsula. This finding is consistent with other paleoclimate evidence for continental aridity in the northern tropics during these events. Our results strengthen the evidence that circum-North Atlantic temperature variations translate to hydrological shifts in the tropics, with major impacts on regional environmental conditions such as rainfall, river discharge, aeolian dust transport, and ocean margin anoxia.
Resumo:
Infilled fissures are described from the interface between two loess deposits on Banks Peninsula, South Island, New Zealand. Both loesses differ from the other loesses by having a solifluction deposit at their base consisting of angular basalt fragments of the same angularity as fresh frost shattered basalt mixed with the loess. Typically, the fissures are narrow and up to 160 cm deep while the infilling of the overlying loess shows no obvious structure. They occur mainly at higher elevations on south (poleward) facing slopes, and the host loess forms a fragipan of high density. They are most readily explained as being seasonal frost fissures or more probably ice-wedge casts, which would have required either permafrost or deep seasonal frost for their formation. If permafrost had existed, this would imply a cooling of the mean annual temperatures by at least 16 to 18°C.
Resumo:
The distribution patterns of calcareous dinoflagellate cysts were studied in the classic Cretaceous Tertiary (K-T) boundary section of Stevns Klint, Denmark, focusing mainly on the response of the cyst association to an abrupt environmental catastrophe. A major part of the Fish Clay, which covers the K-T boundary at its base and is exposed in the investigated section, contains fallout produced by an asteroid impact. Calcareous dinoflagenate cysts are the best preserved remains of carbonate-producing phytoplankton in this layer. The potential of this group of microfossils for the analysis of survival strategies and extinction patterns has been underestimated. The cyst species of the investigated section can be grouped into four assemblages that represent victims, survivors, opportunists, and specially adapted forms. The victims (Pithonelloideae) were an extremely successful group throughout the Upper Cretaceous, but were restricted to the narrow outer shelf. This restriction minimized their spatial distribution, which generally should be large to facilitate escape from unfavorable conditions. Spatial restriction optimized the population decrease by mass mortality, disabling a successful recovery. In contrast, the survivors that became the dominating group in the Danian had a wide spatial range from the shelf environment to the oceanic realm. A unique calcareous dinocyst assemblage in the Fish Clay shows that even under the stressed conditions immediately following the impact event, some species flourished due to special adaptation or high ecological tolerance. The ability of these dinoflagellate species to form calcareous resting cysts in combination with their generally wide spatial distribution in a variety of environments appears to be the main reason for a low extinction rate at the K-T boundary as opposed to the high extinction rate of other phytoplankton groups, such as the coccolithophorids.
Resumo:
Monsoon climate is an important component of the global climatic system. A comprehensive understanding of its variability over glacial-interglacial time scales as well as of its effects on the continent and in the ocean is required to decipher links between climate, continental weathering and productivity. A detailed multiproxy study, including bulk and clay mineralogy, grain-size analysis, phosphorus geochemistry (SEDEX extraction), organic matter characterization, and nitrogen stable isotopes, was carried out on samples from ODP Sites 1143 and 1144 (Leg 184, South China Sea), covering the past 140 000 years. We tentatively reconstruct the complex sedimentation and climatic history of the region during the last glacial-interglacial cycle, when sea-level variations, linked to the growth and melting of ice caps, interact with monsoon variability. During interglacial periods of high sea level, summer monsoon was strong, and humid and warm climate characterized the adjacent continent and islands. Clay minerals bear signals of chemical weathering during these intervals. High calcite and reactive phosphorus mass accumulation rates (MARs) indicate high productivity, especially in the southern region of the basin. During glacial intervals, strong winter monsoon provided enhanced detrital input from the continent, as indicated by high detrital MAR. Glacial low sea level resulted in erosion of sediments from the exposed Sunda shelf to the south, and clay mineral variations indicate that warm and humid conditions still prevailed in the southern tropical areas. Enhanced supply of nutrients from the continent, both by river and eolian input, maintained high primary productivity. Reduced circulation during these periods possibly induced active remobilization of nutrients, such as phosphorus, from the sediments. Intense and short cold periods recorded during glacial and interglacial stages correlate with loess records in China and marine climatic records in the North Atlantic, confirming a teleconnection between low- and high-latitude climate variability.
Resumo:
The terrigenous fraction of sediments from a deep-sea sediment core recovered from the northwestern Western Australian continental slope offshore North West Cape, SE Indian Ocean, reveals a history of Western Australian climate throughout the last 550 ka. End-member modelling of a data set of grain-size distributions (n = 438) of the terrigenous sediment fraction allows to interpret the record in terms of aeolian and fluvial sediment deposition, both related to palaeo-environmental conditions in the North West Cape area. The data set can be best described by two aeolian end members and one fluvial one. Changes in the ratio of the two aeolian end members over the fluvial one are interpreted as aridity variations in northwestern Western Australia. These grain-size data are compared with bulk geochemical data obtained by XRF scans of the core. Log-ratios of the elements Zr/Fe and Ti/Ca, which indicate a terrigenous origin, corroborate the grain-size data. We postulate that the mid- to late Quaternary near North West Cape climate was relatively arid during the glacial and relatively humid during the interglacial stages, owing to meridional shifts in the atmospheric circulation system. Opposite to published palaeo-environmental records from the same latitude (20°S) offshore Chile and offshore Namibia, the Australian aridity record does not show the typical southern hemisphere climate variability of humid glacials and dry interglacials, which we interpret to be the result of the relatively large land mass of the Australian continent, which emphasises a strong monsoonal climatic system.