962 resultados para Glulam beams
Resumo:
The contributions of the concrete slab and composite action to the vertical shear strength of continuous steel-concrete composite beams are ignored in current design codes, which result in conservative designs. This paper investigates the ultimate strength of continuous composite beams in combined bending and shear by using the finite element analysis method. A three-dimensional finite element model has been developed to account for the geometric and material nonlinear behaviour of continuous composite beams. The finite element model is verified by experimental results and then used to study the effects of the concrete slab and shear connection on the vertical shear strength. The moment-shear interaction strength of continuous composite beams is also investigated by varying the moment/ shear ratio. It is shown that the concrete slab and composite action significantly increase the ultimate strength of continuous composite beams. Based on numerical results, design models are proposed for the vertical shear strength and moment-shear interaction of continuous composite beams. The proposed design models, which incorporates the effects of the concrete slab, composite action, stud pullout failure and web shear buckling, are compared with experimental results with good agreement. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Distortional buckling, unlike the usual lateral-torsional buckling in which the cross-section remains rigid in its own plane, involves distortion of web in the cross-section. This type of buckling typically occurs in beams with slender web and stocky flanges. Most of the published studies assume the web to deform with a cubic shape function. As this assumption may limit the accuracy of the results, a fifth order polynomial is chosen here for the web displacements. The general line-type finite element model used here has two nodes and a maximum of twelve degrees of freedom per node. The model not only can predict the correct coupled mode but also is capable of handling the local buckling of the web.
Resumo:
Despite experimental evidences, the contributions of the concrete slab and composite action to the vertical shear strength of simply supported steel-concrete composite beams are not considered in current design codes, which lead to conservative designs. In this paper, the finite element method is used to investigate the flexural and shear strengths of simply supported composite beams under combined bending and shear. A three-dimensional finite element model has been developed to account for geometric and material nonlinear behavior of composite beams, and verified by experimental results. The verified finite element model is than employed to quantify the contributions of the concrete slab and composite action to the moment and shear capacities of composite beams. The effect of the degree of shear connection on the vertical shear strength of deep composite beams loaded in shear is studied. Design models for vertical shear strength including contributions from the concrete slab and composite action and for the ultimate moment-shear interaction ate proposed for the design of simply supported composite beams in combined bending and shear. The proposed design models provide a consistent and economical design procedure for simply supported composite beams.
Resumo:
We present a new method of modeling imaging of laser beams in the presence of diffraction. Our method is based on the concept of first orthogonally expanding the resultant diffraction field (that would have otherwise been obtained by the laborious application of the Huygens diffraction principle) and then representing it by an effective multimodal laser beam with different beam parameters. We show not only that the process of obtaining the new beam parameters is straightforward but also that it permits a different interpretation of the diffraction-caused focal shift in laser beams. All of the criteria that we have used to determine the minimum number of higher-order modes needed to accurately represent the diffraction field show that the mode-expansion method is numerically efficient. Finally, the characteristics of the mode-expansion method are such that it allows modeling of a vast array of diffraction problems, regardless of the characteristics of the incident laser beam, the diffracting element, or the observation plane. (C) 2005 Optical Society of America.
Resumo:
We have previously [Phys. Rev. A 65, 043803 (2002)] analyzed adaptive measurements for estimating the continuously varying phase of a coherent beam, and a broadband squeezed beam. A real squeezed beam must have finite photon flux N and hence can be significantly squeezed only over a limited frequency range. In this paper we analyze adaptive phase measurements of this type for a realistic model of a squeezed beam. We show that, provided it is possible to suitably choose the parameters of the beam, a mean-square phase uncertainty scaling as (N/kappa)(-5/8) is possible, where kappa is the linewidth of the beam resulting from the fluctuating phase. This is an improvement over the (N/kappa)(-1/2) scaling found previously for coherent beams. In the experimentally realistic case where there is a limit on the maximum squeezing possible, the variance will be reduced below that for coherent beams, though the scaling is unchanged.
Resumo:
Shear strengthening is required when an RC beam is found deficient in shear, or when its shear capacity falls below its flexural capacity after flexural strengthening. A recent technique for the shear strengthening of RC beams is to provide additional FRP web reinforcement, commonly in the form of bonded external FRP strips/sheets. Over the last few years, several experimental studies have been conducted on this new strengthening technique, which has established its effectiveness. While experimental methods of investigation are extremely useful in obtaining information about the composite behaviour of FRP and reinforced concrete, the use of numerical models such as the one presented in this paper helps in developing a good understanding of the behaviour at lower costs. In the study presented in this paper, ANSYS finite element program is used to examine the response of beams strengthened in shear by FRPs. The FE model is calibrated against test results performed at the University of Kentucky. Once validated, the model is used to examine the influence of fibre orientation, compressive strength of concrete, area of tensile and compressive reinforcements, and amount and distance between stirrups on the strength and ductility of FRP strengthened beam.
Numerical predictions for the ultimate torque capacity of FRP strengthened reinforced concrete beams
Resumo:
The optical forces in optical tweezers can be robustly modeled over a broad range of parameters using generalsed Lorenz–Mie theory. We describe the procedure, and show how the combination of experimental measurement of properties of the trap coupled with computational modeling, can allow unknown parameters of the particle—in this case, the refractive index—to be determined.