900 resultados para Glucose-stimulated insulin secretion
Resumo:
The effect of graded levels of hyperinsulinemia on energy expenditure, while euglycemia was maintained by glucose infusion, was examined in 22 healthy young male volunteers by using the euglycemic insulin clamp technique in combination with indirect calorimetry. Insulin was infused at five rates to achieve steady-state hyperinsulinemic plateaus of 62 +/- 4, 103 +/- 5, 170 +/- 10, 423 +/- 16, and 1,132 +/- 47 microU/ml. Total body glucose uptake during each of the five insulin clamp studies was 0.41, 0.50, 0.66, 0.74, and 0.77 g/min, respectively. Glucose storage (calculated from the difference between total body glucose uptake minus total glucose oxidation) was 0.25, 0.29, 0.43, 0.49, and 0.52 g/min for each group, respectively, and represented over 60-70% of total glucose uptake. The net increment in energy expenditure after intravenous glucose was 0.08, 0.10, 0.14, 0.17, and 0.23 kcal/min, respectively. Throughout the physiological and supraphysiological range of insulinemia, there was a significant relationship (r = 0.95, P less than 0.001) between the increment in energy expenditure and glucose storage, indicating an energy cost of 0.45 kcal/g glucose stored. However, at each level of hyperinsulinemia, the theoretical value for the energy cost of glucose storage (assuming that all of the glucose is stored in the form of glycogen) could account for only 45-63% of the actual increase in energy expenditure that was measured by indirect calorimetry. These results indicate that factors in addition to glucose storage as glycogen must be responsible for the increase in energy expenditure that accompanies glucose infusion.
Resumo:
Hyperuricaemia is one of the components of metabolic syndrome. Both oxidative stress and hyperinsulinism are important variables in the genesis of this syndrome and have a close association with uric acid (UA). We evaluated the effect of an oral glucose challenge on UA concentrations. The study included 656 persons aged 18 to 65 years. Glycaemia, insulin, UA and plasma proteins were measured at baseline and 120 min after an oral glucose tolerance test (OGTT). The baseline sample also included measurements of total cholesterol, triacylglycerol (TAG) and HDL-cholesterol. Insulin resistance was calculated with the homeostasis model assessment. UA levels were significantly lower after the OGTT (281.93 (sd 92.19) v. 267.48 (sd 90.40) micromol/l; P < 0.0001). Subjects with a drop in UA concentrations >40.86 micromol/l (>75th percentile) had higher plasma TAG levels (P = 0.0001), baseline insulin (P = 0.02) and greater insulin resistance (P = 0.034). Women with a difference in plasma concentrations of UA above the 75th percentile had higher baseline insulin levels (P = 0.019), concentration of plasma TAG (P = 0.0001) and a greater insulin resistance index (P = 0.029), whereas the only significant difference in men was the level of TAG. Multiple regression analysis showed that the basal TAG levels, insulin at 120 min, glycaemia at 120 min and waist:hip ratio significantly predicted the variance in the UA difference (r2 0.077). Levels of UA were significantly lower after the OGTT and the individuals with the greatest decrease in UA levels are those who have greater insulin resistance and higher TAG levels.
Resumo:
Résumé Rôle du transporteur de glucose GLUT2 dans les mécanismes centraux de glucodétection impliqués dans le contrôle de la sécrétion du glucagon et de la prise alimentaire. Les mécanismes centraux de glucodétection jouent un rôle majeur dans le contrôle de l'homéostasie glucidique. Ces senseurs régulent principalement la sécrétion des hormones contre-régulatrices, la prise alimentaire et la dépense énergétique. Cependant, la nature cellulaire et le fonctionnement moléculaire de ces mécanismes ne sont encore que partiellement élucidés. Dans cette étude, nous avons tout d'abord mis en évidence une suppression de la stimulation de la sécrétion du glucagon et de la prise alimentaire en réponse à une injection intracérébroventriculaire (i.c.v.) de 2-déoxy-D-glucose (2-DG) chez les souris de fond génétique mixte et déficientes pour le gène glut2 (souris RIPG1xglut2-/-). De plus, chez ces souris, l'injection de 2-DG n'augmente pas l'activation neuronale dans l'hypothalamus et le complexe vagal dorsal. Nous avons ensuite montré que la ré-expression de GLUT2 dans les neurones des souris RIPG1xg1ut2-/- ne restaure pas la sécrétion du glucagon et la prise alimentaire en réponse à une injection i.c.v. de 2-DG. En revanche, l'injection de 2-DG réalisée chez les souris RIPG1xg1ut2-/- ré-exprimant le GLUT2 dans leurs astrocytes, stimule la sécrétion du glucagon et l'activation neuronale dans le complexe vagal dorsal mais n'augmente pas la prise alimentaire ni l'activation neuronale dans l'hypothalamus. L'ensemble de ces résultats démontre l'existence de différents mécanismes centraux de glucodétection dépendants de GLUT2. Les mécanismes régulant la sécrétion du glucagon sont dépendants de GLUT2 astrocytaire et pourraient être localisés dans le complexe vagal dorsal. L'implication des astrocytes dans ces mécanismes suggère un couplage fonctionnel entre les astrocytes et les neurones adjacents « sensibles au glucose ». Lors de cette étude, nous avons remarqué chez les souris RIPG1xg1ut2-/- de fond génétique pur C57B1/6, que seul le déclenchement de la prise alimentaire en réponse à l'injection i.p. ou i.c.v. de 2-DG est aboli. Ces données mettent en évidence que suivant le fond génétique de la souris, les mécanismes centraux de glucodétection impliqués dans la régulation de la sécrétion peuvent être indépendants de GLUT2. Summary. Role of transporter GLUT2 in central glucose sensing involved in the control of glucagon secretion and food intake. Central glucose sensors play an important role in the control of glucose homeostasis. These sensors regulate general physiological functions, including food intake, energy expenditure and hormones secretion. So far the cellular and molecular basis of central glucose detection are poorly understood. Hypoglycemia, or cellular glucoprivation by intraperitoneal injection of 2-deoxy¬glucose (2-DG) injection, elicit multiple glucoregulatory responses, in particular glucagon secretion and stimulation of feeding. We previously demonstrated that the normal glucagon response to insulin-induced hypoglycemia was suppressed in mice lacking GLUT2. This indicated the existence of extra-pancreatic, GLUT2-dependent, glucose sensors controllling glucagon secretion. Here, we have demonstrated that the normal glucagon and food intake responses to central glucoprivation, by intracerebroventricular (i.c.v.) injections of 2-DG, were suppressed in mice lacking GLUT2 (RIPG1xglut2-/- mice) indicating that GLUT2 plays a role in central glucose sensing units controlling secretion of glucagon and food intake. Whereas it is etablished that glucose responsive neurons change their firing rate in response to variations of glucose concentrations, the exact mechanism of glucose detection is not established. In particular, it has been suggested that astrocytic cells may be the primary site of glucose detection and that a signal is subsequently transmitted to neurons. To evaluate the respective role of glial and neuronal expression of GLUT2 in central glucodetection, we studied hypoglycemic and glucoprivic responses following cellular glucoprivation in RIPG1xglut2-/- mice reexpressing the transgenic GLUT2 specifially in their astrocytes (pGFAPG2xRIPG1xglut2-/- mice) or their neurons (pSynG2xRIPG1xglut2-/- mice). The increase of food intake after i.p. injection of 2-DG in control mice was not observed in the pGFAPG2xRIPG1xglut2-/- mice. Whereas a strong increase of glucagon secretion was observed in control and pGFAPG2xRIPG1xglut2-/- mice, not glucagonemic response was induced in pSynG2xRIPG1xglut2-/- mice. Our results show that GLUT2 reexpression in glial cells but not in neurons restored glucagon secretion and thus present a strong evidence that glucose detection and the control of glucagon secretion require a coupling between glial cells and neurons. Furthermore, these results show the existence of differents glucose sensors in CNS. Résumé tout public. Rôle du transporteur de glucose GLUT2 dans les mécanismes centraux de glucodétection impliqués dans le contrôle de la sécrétion du glucagon et de la prise alimentaire. Chez les mammifères, en dépit des grandes variations dans l'apport et l'utilisation du glucose, la glycémie est maintenue à une valeur relativement constante d'environ 1 g/l. Cette régulation est principalement sous le contrôle de deux hormones produites par le pancréas l'insuline et le glucagon. A la suite d'un repas, la détection de l'élévation de la glycémie par le pancréas permet la libération pancréatique de l'insuline dans le sang. Cette hormone va alors permettre le stockage dans le foie du glucose sanguin en excès et diminuer ainsi la glycémie. Sans insuline, le glucose s'accumule dans le sang. On parle alors d'hyperglycémie chronique. Cette situation est caractéristique du diabète et augmente les risques de maladies cardiovasculaires. A l'inverse, lors d'un jeûne, la détection de la diminution de la glycémie par le cerveau permet le déclenchement de la prise alimentaire et stimule la sécrétion de glucagon par le pancréas. Le glucagon va alors permettre la libération dans le sang du glucose stocké par le foie. Les effets du glucagon et de la prise de nourriture augmentent ainsi les concentrations sanguines de glucose pour empêcher une diminution trop importante de la glycémie. Une hypoglycémie sévère peut entraîner un mauvais fonctionnement du cerveau allant jusqu'à des lésions cérébrales. Contrairement aux mécanismes pancréatiques de détection du glucose, les mécanismes de glucodétection du cerveau ne sont encore que partiellement élucidés. Dans le laboratoire, nous avons observé, chez les souris transgéniques n'exprimant plus le transporteur de glucose GLUT2, une suppression de la stimulation de la sécrétion du glucagon et du déclenchement de la prise alimentaire en réponse à une hypoglycémie, induite uniquement dans le cerveau. Dans le cerveau, le GLUT2 est principalement exprimé par les astrocytes, cellules gliales connues pour soutenir, nourrir et protéger les neurones. Nous avons alors ré-exprimé spécifiquement le GLUT2 dans les astrocytes des souris transgéniques et nous avons observé que seule la stimulation de la sécrétion du glucagon en réponse à l'hypoglycémie est restaurée. Ces résultats mettent en évidence que la sécrétion du glucagon et la prise alimentaire sont contrôlées par différents mécanismes centraux de glucodétection dépendants de GLUT2.
Resumo:
The change in energy expenditure consecutive to the infusion of glucose/insulin was examined in 17 non-obese (ten young, seven middle-aged) and 27 diabetic and non-diabetic obese subjects by employing the euglycemic insulin clamp technique in conjunction with continuous indirect calorimetry. The obese subjects were divided into four groups according to their response to a 100-g oral glucose test: group A, normal glucose tolerance; group B, impaired glucose tolerance; group C, diabetes with increased insulin response; group D, diabetes with reduced insulin response. The glucose/insulin infusion provoked an increase in energy expenditure in both young and middle-aged controls (+8.2 +/- 1.3 percent and +5.9 +/- 0.5 percent over the preinfusion baseline respectively), but a lower increase in the non-diabetic obese groups A and B (+4.0 +/- 0.7 percent and +2.0 +/- 1.0 percent over the preinfusion baseline respectively, P less than 0.05 and P less than 0.01 vs young controls). However, in the diabetic obese groups C and D, energy expenditure failed to increase in response to the glucose/insulin infusion (mean change: +0.1 +/- 1.0 percent and -2.0 +/- 1.9 percent (P less than 0.01, vs middle-aged) over the preinfusion baseline respectively). When the glucose-induced thermogenesis (GIT) was related to the glucose uptake--taking into account the hepatic glucose production--the GIT was found to be similarly reduced in the diabetics groups (C and D). The net change in the rate of energy expenditure was found to be significantly correlated with the rate of glucose uptake (r = +0.647, n = 44, P less than 0.001) when all the individuals were pooled. In conclusion, this study shows that the low glucose-induced thermogenesis in obese diabetics during glucose insulin infusion is mainly related to a reduced rate of glucose uptake; in addition, inhibition of gluconeogenesis by the glucose/insulin infusion may also contribute to decrease the thermogenic response.
Resumo:
Insulin resistance in obesity is partly due to diminished glucose transport in myocytes and adipocytes, but underlying mechanisms are uncertain. Insulin-stimulated glucose transport requires activation of phosphatidylinositol (PI) 3-kinase (3K), operating downstream of insulin receptor substrate-1. PI3K stimulates glucose transport through increases in PI-3,4,5-(PO(4))(3) (PIP(3)), which activates atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt). However, previous studies suggest that activation of aPKC, but not PKB, is impaired in intact muscles and cultured myocytes of obese subjects. Presently, we examined insulin activation of glucose transport and signaling factors in cultured adipocytes derived from preadipocytes harvested during elective liposuction in lean and obese women. Relative to adipocytes of lean women, insulin-stimulated [(3)H]2-deoxyglucose uptake and activation of insulin receptor substrate-1/PI3K and aPKCs, but not PKB, were diminished in adipocytes of obese women. Additionally, the direct activation of aPKCs by PIP(3) in vitro was diminished in aPKCs isolated from adipocytes of obese women. Similar impairment in aPKC activation by PIP(3) was observed in cultured myocytes of obese glucose-intolerant subjects. These findings suggest the presence of defects in PI3K and aPKC activation that persist in cultured cells and limit insulin-stimulated glucose transport in adipocytes and myocytes of obese subjects.
Resumo:
Nitric oxide (NO) plays a major role in the regulation of cardiovascular and metabolic homeostasis, as evidenced by insulin resistance and arterial hypertension in endothelial NO synthase (eNOS) null mice. Extrapolation of these findings to humans is difficult, however, because eNOS gene deficiency has not been reported. eNOS gene polymorphism and impaired NO synthesis, however, have been reported in several cardiovascular disease states and could predispose to insulin resistance. High-fat diet induces insulin resistance and arterial hypertension in normal mice. To test whether partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension during metabolic stress, we examined effects of an 8-week high-fat diet on insulin sensitivity (euglycemic clamp) and arterial pressure in eNOS(+/-) mice. When fed a normal diet, these mice had normal insulin sensitivity and were normotensive. When fed a high-fat diet, however, eNOS(+/-) mice developed exaggerated arterial hypertension and had fasting hyperinsulinemia and a 35% lower insulin-stimulated glucose utilization than control mice. The partial deletion of the eNOS gene does not alter insulin sensitivity or blood pressure in mice. When challenged with nutritional stress, however, partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension, providing further evidence for the importance of this gene in linking metabolic and cardiovascular disease.
Resumo:
Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.
Resumo:
AIMS/HYPOTHESIS: The molecular mechanisms of obesity-related insulin resistance are incompletely understood. Macrophages accumulate in adipose tissue of obese individuals. In obesity, monocyte chemoattractant protein-1 (MCP-1), a key chemokine in the process of macrophage accumulation, is overexpressed in adipose tissue. MCP-1 is an insulin-responsive gene that continues to respond to exogenous insulin in insulin-resistant adipocytes and mice. MCP-1 decreases insulin-stimulated glucose uptake into adipocytes. The A-2518G polymorphism in the distal regulatory region of MCP-1 may regulate gene expression. The aim of this study was to investigate the impact of this gene polymorphism on insulin resistance. METHODS: We genotyped the Ludwigshafen Risk and Cardiovascular Health (LURIC) cohort ( n=3307). Insulin resistance, estimated by homeostasis model assessment, and Type 2 diabetes were diagnosed in 803 and 635 patients respectively. RESULTS: Univariate analysis revealed that plasma MCP-1 levels were significantly and positively correlated with WHR ( p=0.011), insulin resistance ( p=0.0097) and diabetes ( p<0.0001). Presence of the MCP-1 G-2518 allele was associated with decreased plasma MCP-1 ( p=0.017), a decreased prevalence of insulin resistance (odds ratio [OR]=0.82, 95% CI: 0.70-0.97, p=0.021) and a decreased prevalence of diabetes (OR=0.80, 95% CI: 0.67-0.96, p=0.014). In multivariate analysis, the G allele retained statistical significance as a negative predictor of insulin resistance (OR=0.78, 95% CI: 0.65-0.93, p=0.0060) and diabetes (OR=0.80, 95% CI: 0.66-0.96, p=0.018). CONCLUSIONS/INTERPRETATION: In a large cohort of Caucasians, the MCP-1 G-2518 gene variant was significantly and negatively correlated with plasma MCP-1 levels and the prevalence of insulin resistance and Type 2 diabetes. These results add to recent evidence supporting a role for MCP-1 in pathologies associated with hyperinsulinaemia.
Resumo:
SUMMARYInsulin secretion from pancreatic beta-cells is a fundamental condition for the maintenance of blood glucose levels. During the last decades, important components of the molecular machinery controlling hormone release have been characterized. My PhD thesis was dedicated to the study of new signaling pathways regulating insulin exocytosis and in particular to the role of small monomelic guanine triphosphatase or GTPases controlling the last events of hormone release.The first part of my thesis focused on Ras-like (Ral) RalA and RalB proteins. We investigated the mechanisms leading to activation of Ral proteins in pancreatic beta-cells and analyzed their impact on different steps of the insulin-secretory process. Our results have shown that RalA is the predominant isoform expressed in pancreatic islets and insulin-secreting cell lines. Silencing of this GTPase in INS-IE cells by RNA interference led to a decrease in secretagogue-induced hormone release. The activation of the GTPase, followed by FRET imaging, is triggered by increases in intracellular Ca and cAMP. Defective insulin release in cells lacking RalA is associated with a decrease in the secretory granules docked at the plasma membrane, detected by TIRF microscopy and with strong impairment in PLD1 activation in response to secretagogues. RalA was found to be activated by the exchange factor RalGDS, which regulates hormone secretion induced by secretagogues and the docking step of insulin-containing granules at the plasma membrane. In the second part of this work we have shown that a member of the Rab family, Rab37, is present on insulin-containing secretory granules of pancreatic beta-cells. In addition, our experiments have suggested that Rab37 is required to obtain an optimal insulin secretory response induced by secretogogues and is important for the docking step of insulin-containing granules at the plasma membrane.
Resumo:
In the pathogenesis of type 2 diabetes, hyperglycemia appears when ß cell mass and insulin secretory capacity are no longer sufficient to compensate for insulin resistance. The reduction in ß cell mass results from increased apoptosis. Therefore, finding strategies to preserve ß cell mass and function may be useful for the treatment or prevention of diabetes. Glucagon-like peptide-1 (GLP-1) protects ß cells against apoptosis, increases their glucose competence, and induces their proliferation. Previous studies in the lab of Prof. Bernard Thorens showed that the GLP-1 anti- apoptotic effect was mediated by robust up-regulation of IGF-1R expression, and this was paralleled with an increase in Akt phosphorylation. This effect was dependent not only on increased IGF-1R expression but also on the autocrine secretion of insulin-like growth factor 2 (IGF2). They also demonstrated that GLP-1 up-regulated IGF-1R expression by a protein a kinase A-dependent translational control mechanism. The main aim of this PhD work has been to further investigate the role of the IGF2/IGF-1 Receptor autocrine loop in ß cell function and to determine the physiological role of IGF2 in ß cell plasticity and its regulation by nutrients. This PhD thesis is divided in 3 chapters. The first chapter describes the role of IGF2/IGF-1R autocrine loop in ß cell glucose competence and proliferation. Here using MIN6 cells and primary mouse islets as an experimental model we demonstrated that the glucose competence of these cells was dependent on the level of IGF-1R expression and on IGF2 secretion. Furthermore, we showed that GLP-1-induced primary ß cell proliferation was significantly reduced by Igf-lr gene inactivation and by IGF2 immunoneutralization or knockdown. In the second chapter we examined the role of this IGF2/IGF-1R autocrine loop on the ß cell functional plasticity during ageing, pregnancy, and in response to acute induction of insulin resistance using mice with ß cell-specific inactivation of ig/2. Here we showed a gender-dependent role of ß cell IGF2 in ageing and high fat diet-induced metabolic stress; we demonstrated that the autocrine secretion of IGF2 is essential for ß cell mass adaptation during pregnancy. Further we also showed that this autocrine loop plays an important role in ß cell expansion in response to acute induction of insulin resistance. The aim of the third chapter was to investigate whether we can modulate the expression and secretion of IGF2 by nutrients in order to increase the activity of autocrine loop. Here we showed that glutamine induces IGF2 biosynthesis and its fast secretion through the regulated pathway, a mechanism enhanced in the presence of glucose. Furthermore, we demonstrated that glutamine-mediated Akt phosphorylation is dependent on IGF2 secretion, indicating that glutamine controls the activity of the IGF2/IGF1R autocrine loop through IGF2 up-regulation. In summary, this PhD work highlights that autocrine secretion of IGF2 is required for compensatory ß cell adaptation to ageing, pregnancy, and insulin resistance. Moreover IGF2/IGF1R autocrine loop is regulated by two feeding-related cues, GLP-1 to increase IGF-1R expression and glutamine to control IGF2 biosynthesis and secretion. -- Dans le diabète de type 2, lorsque la sécrétion d'insuline des cellules Beta du pancréas n'est plus suffisante pour compenser la résistance à l'insuline, une hyperglycémie est observée. Cette baisse de sécrétion d'insuline est Causée par la diminution de la masse de cellules Beta suite à l'augmentation du phénomène de mort cellulaire ou « apoptose ». En diabétologie, une des stratégies médicales concerne la préservation des cellules Beta du pancréas. Une des protéines intervenant dans cette fonction est GLP-1 (Glucagon-like peptide-1). GLP-1 est capable de protéger les cellules Beta contre la mort cellulaire et d'induire leur prolifération. Des études précédemment menées dans le laboratoire du Professeur Bernard Thorens ont montrées que l'activité « anti-apoptotique » de GLP-1 est le résultat l'une augmentation de l'expression du gène IGF-1R sous la dépendance de la sécrétion autocrine d'IGF2 (Insulin-Like Growth Factor). Le but de mon travail de thèse aura été d'étudier le mécanisme de la régulation de GLP-1 par IGF2 et plus précisément de déterminer le rôle physiologique d'IGF2 dans la plasticité des cellules ß ainsi que sa régulation par les nutriments. Ce manuscrit est ainsi divisé en trois chapitres : Le premier chapitre décrit la fonction d'IGF2/IGF- R1 dans la réponse des cellules Beta au glucose ainsi que dans leur capacité à proliférer. Dans ce chapitre nous avons montré l'importance du niveau d'expression d'IGFR-1 et de la sécrétion d'IGF2 dans la régulation du métabolisme du glucose. Dans un deuxième chapitre, nous étudions la boucle de régulation IGF2/IGF-R1 sur la plasticité des cellules Beta lors du vieillissement, de la grossesse ainsi que dans un modèle de souris résistantes à l'insuline. Cette étude met en évidence un dimorphisme sexuel dans le rôle d'IGF2 lors du vieillissement et lors d'un stress métabolique. Nous montrons également l'importance d'IGF2 pour l'adaptation des cellules Beta tout au long de la grossesse ou lors du phénomène de résistance à l'insuline. Dans un troisième chapitre, nous mettons en évidence la possibilité de moduler l'expression et la sécrétion d'IGF2 par les nutriments. En conclusion, ce travail de thèse aura permis de mettre en évidence l'importance d'IGF2 dans la plasticité des cellules ß, une plasticité indispensable lors du vieillissement, de la grossesse ou encore dans le cas d'une résistance à l'insuline.
Resumo:
OBJECTIVE: To assess how intrahepatic fat and insulin resistance relate to daily fructose and energy intake during short-term overfeeding in healthy subjects. DESIGN AND METHODS: The analysis of the data collected in several studies in which fasting hepatic glucose production (HGP), hepatic insulin sensitivity index (HISI), and intrahepatocellular lipids (IHCL) had been measured after both 6-7 days on a weight-maintenance diet (control, C; n = 55) and 6-7 days of overfeeding with 1.5 (F1.5, n = 7), 3 (F3, n = 17), or 4 g fructose/kg/day (F4, n = 10), with 3 g glucose/kg/day (G3, n = 11), or with 30% excess energy as saturated fat (fat30%, n = 10). RESULTS: F3, F4, G3, and fat30% all significantly increased IHCL, respectively by 113 ± 86, 102 ± 115, 59 ± 92, and 90 ± 74% as compared to C (all P < 0.05). F4 and G3 increased HGP by 16 ± 10 and 8 ± 11% (both P < 0.05), and F3 and F4 significantly decreased HISI by 20 ± 22 and 19 ± 14% (both P < 0.01). In contrast, there was no significant effect of fat30% on HGP or HISI. CONCLUSIONS: Short-term overfeeding with fructose or glucose decreases hepatic insulin sensitivity and increases hepatic fat content. This indicates short-term regulation of hepatic glucose metabolism by simple carbohydrates.
Resumo:
BACKGROUND: Insulin resistance and arterial hypertension are related, but the underlying mechanism is unknown. Endothelial nitric oxide synthase (eNOS) is expressed in skeletal muscle, where it may govern metabolic processes, and in the vascular endothelium, where it regulates arterial pressure. METHODS AND RESULTS: To study the role of eNOS in the control of the metabolic action of insulin, we assessed insulin sensitivity in conscious mice with disruption of the gene encoding for eNOS. eNOS(-/-) mice were hypertensive and had fasting hyperinsulinemia, hyperlipidemia, and a 40% lower insulin-stimulated glucose uptake than control mice. Insulin resistance in eNOS(-/-) mice was related specifically to impaired NO synthesis, because in equally hypertensive 1-kidney/1-clip mice (a model of renovascular hypertension), insulin-stimulated glucose uptake was normal. CONCLUSIONS: These results indicate that eNOS is important for the control not only of arterial pressure but also of glucose and lipid homeostasis. A single gene defect, eNOS deficiency, may represent the link between metabolic and cardiovascular disease.
Resumo:
The GTPases Rab3a and Rab27a and their effectors Granuphilin/Slp4 and Noc2 are essential regulators of neuroendocrine secretion. Chronic exposure of pancreatic beta-cells to supraphysiological glucose levels decreased selectively the expression of these proteins. This glucotoxic effect was mimicked by cAMP-raising agents and blocked by PKA inhibitors. We demonstrate that the transcriptional repressor ICER, which is induced in a PKA-dependent manner by chronic hyperglycemia and cAMP-raising agents, is responsible for the decline of the four genes. ICER overexpression diminished the level of Granuphilin, Noc2, Rab3a and Rab27a by binding to cAMP responsive elements located in the promoters of these genes and inhibited exocytosis of beta-cells in response to secretagogues. Moreover, the loss in the expression of the genes of the secretory machinery caused by glucose and cAMP-raising agents was prevented by an antisense construct that reduces ICER levels. We propose that induction of inappropriate ICER levels lead to defects in the secretory process of pancreatic beta-cells possibly contributing, in conjunction with other known deleterious effects of hyperglycemia, to defective insulin release in type 2 diabetes.
Resumo:
Seven obese Type 2 diabetic patients were studied for two 4-h periods after ingestion of a glucose load to determine the effects of preprandial subcutaneous injection of Insulin Lispro (5 min before the meal) or regular insulin (20 min before the meal) on glucose metabolism. Glucose production and utilisation were measured using a dual isotope method. After Lispro, the mean postprandial increase in plasma glucose was 29% lower and the increase in insulin concentration 25% higher than after regular insulin (p < 0.05). Suppression of endogenous glucose production was similar with both types of insulin. Thus, preprandial injection of Lispro reduced postprandial glucose increments in Type 2 diabetic patients as compared to regular insulin. This effect is best explained by the increased postprandial bioavailability of Lispro.