901 resultados para Globalización, globalidad, capital natural, capitalismo, amenazas.
Resumo:
Semi-natural grasslands are the most important agricultural areas for biodiversity. The present study investigates the effects of traditional livestock grazing and mowing on plant species richness, the main emphasis being on cattle grazing in mesic semi-natural grasslands. The two reviews provide a thorough assessment of the multifaceted impacts and importance of grazing and mowing management to plant species richness. It is emphasized that livestock grazing and mowing have partially compensated the suppression of major natural disturbances by humans and mitigated the negative effects of eutrophication. This hypothesis has important consequences for nature conservation: A large proportion of European species originally adapted to natural disturbances may be at present dependent on livestock grazing and / or mowing. Furthermore, grazing and mowing are key management methods to mitigate effects of nutrient-enrichment. The species composition and richness in old (continuously grazed), new (grazing restarting 3-8 years ago) and abandoned (over 10 years) pastures differed consistently across a range of spatial scales, and was intermediate in new pastures compared to old and abandoned pastures. In mesic grasslands most plant species were shown to benefit from cattle grazing. Indicator species of biologically valuable grasslands and rare species were more abundant in grazed than in abandoned grasslands. Steep S-SW-facing slopes are the most suitable sites for many grassland plants and should be prioritized in grassland restoration. The proportion of species trait groups benefiting from grazing was higher in mesic semi-natural grasslands than in dry and wet grasslands. Consequently, species trait responses to grazing and the effectiveness of the natural factors limiting plant growth may be intimately linked High plant species richness of traditionally mowed and grazed areas is explained by numerous factors which operate on different spatial scales. Particularly important for maintaining large scale plant species richness are evolutionary and mitigation factors. Grazing and mowing cause a shift towards the conditions that have occurred during the evolutionary history of European plant species by modifying key ecological factors (nutrients, pH and light). The results of this Dissertation suggest that restoration of semi-natural grasslands by private farmers is potentially a useful method to manage biodiversity in the agricultural landscape. However, the quality of management is commonly improper, particularly due to financial constraints. For enhanced success of restoration, management regulations in the agri-environment scheme need to be defined more explicitly and the scheme should be revised to encourage management of biodiversity.
Resumo:
In this thesis, the genetic variation of human populations from the Baltic Sea region was studied in order to elucidate population history as well as evolutionary adaptation in this region. The study provided novel understanding of how the complex population level processes of migration, genetic drift, and natural selection have shaped genetic variation in North European populations. Results from genome-wide, mitochondrial DNA and Y-chromosomal analyses suggested that the genetic background of the populations of the Baltic Sea region lies predominantly in Continental Europe, which is consistent with earlier studies and archaeological evidence. The late settlement of Fennoscandia after the Ice Age and the subsequent small population size have led to pronounced genetic drift, especially in Finland and Karelia but also in Sweden, evident especially in genome-wide and Y-chromosomal analyses. Consequently, these populations show striking genetic differentiation, as opposed to much more homogeneous pattern of variation in Central European populations. Additionally, the eastern side of the Baltic Sea was observed to have experienced eastern influence in the genome-wide data as well as in mitochondrial DNA and Y-chromosomal variation – consistent with linguistic connections. However, Slavic influence in the Baltic Sea populations appears minor on genetic level. While the genetic diversity of the Finnish population overall was low, genome-wide and Y-chromosomal results showed pronounced regional differences. The genetic distance between Western and Eastern Finland was larger than for many geographically distant population pairs, and provinces also showed genetic differences. This is probably mainly due to the late settlement of Eastern Finland and local isolation, although differences in ancestral migration waves may contribute to this, too. In contrast, mitochondrial DNA and Y-chromosomal analyses of the contemporary Swedish population revealed a much less pronounced population structure and a fusion of the traces of ancient admixture, genetic drift, and recent immigration. Genome-wide datasets also provide a resource for studying the adaptive evolution of human populations. This study revealed tens of loci with strong signs of recent positive selection in Northern Europe. These results provide interesting targets for future research on evolutionary adaptation, and may be important for understanding the background of disease-causing variants in human populations.
Resumo:
Microbial activity in soils is the main source of nitrous oxide (N2O) to the atmosphere. Nitrous oxide is a strong greenhouse gas in the troposphere and participates in ozone destructive reactions in the stratosphere. The constant increase in the atmospheric concentration, as well as uncertainties in the known sources and sinks of N2O underline the need to better understand the processes and pathways of N2O in terrestrial ecosystems. This study aimed at quantifying N2O emissions from soils in northern Europe and at investigating the processes and pathways of N2O from agricultural and forest ecosystems. Emissions were measured in forest ecosystems, agricultural soils and a landfill, using the soil gradient, chamber and eddy covariance methods. Processes responsible for N2O production, and the pathways of N2O from the soil to the atmosphere, were studied in the laboratory and in the field. These ecosystems were chosen for their potential importance to the national and global budget of N2O. Laboratory experiments with boreal agricultural soils revealed that N2O production increases drastically with soil moisture content, and that the contribution of the nitrification and denitrification processes to N2O emissions depends on soil type. Laboratory study with beech (Fagus sylvatica) seedlings demonstrated that trees can serve as conduits for N2O from the soil to the atmosphere. If this mechanism is important in forest ecosystems, the current emission estimates from forest soils may underestimate the total N2O emissions from forest ecosystems. Further field and laboratory studies are needed to evaluate the importance of this mechanism in forest ecosystems. The emissions of N2O from northern forest ecosystems and a municipal landfill were highly variable in time and space. The emissions of N2O from boreal upland forest soil were among the smallest reported in the world. Despite the low emission rates, the soil gradient method revealed a clear seasonal variation in N2O production. The organic topsoil was responsible for most of the N2O production and consumption in this forest soil. Emissions from the municipal landfill were one to two orders of magnitude higher than those from agricultural soils, which are the most important source of N2O to the atmosphere. Due to their small areal coverage, landfills only contribute minimally to national N2O emissions in Finland. The eddy covariance technique was demonstrated to be useful for measuring ecosystem-scale emissions of N2O in forest and landfill ecosystems. Overall, more measurements and integration between different measurement techniques are needed to capture the large variability in N2O emissions from natural and managed northern ecosystems.
Resumo:
The welfare effect of a foreign capital inflow in an economy which practises an export-oriented trade policy is examined. The latter takes the form of optimally designed export subsidies, minimizing the welfare costs of existing import tariffs. Under the practice of this policy, an inflow of foreign capital is shown to have anambiguous welfare effect. An empirically relevant condition for welfare improvement is derived and discussed.
Resumo:
Coal seam gas operations produce significant quantities of associated water which often require demineralization. Ion exchange with natural zeolites has been proposed as a possible approach. The interaction of natural zeolites with solutions of sodium chloride and sodium bicarbonate in addition to coal seam gas water is not clear. Hence, we investigated ion exchange kinetics, equilibrium, and column behaviour of an Australian natural zeolite. Kinetic tests suggested that the pseudo first order equation best simulated the data. Intraparticle diffusion was part of the rate limiting step and more than one diffusion process controlled the overall rate of sodium ion uptake. Using a constant mass of zeolite and variable concentration of either sodium chloride or sodium bicarbonate resulted in a convex isotherm which was fitted by a Langmuir model. However, using a variable mass of zeolite and constant concentration of sodium ions revealed that the exchange of sodium ions with the zeolite surface sites was in fact unfavourable. Sodium ion exchange from bicarbonate solutions (10.3 g Na/kg zeolite) was preferred relative to exchange from sodium chloride solutions (6.4 g Na/kg zeolite). The formation of calcium carbonate species was proposed to explain the observed behaviour. Column studies of coal seam gas water showed that natural zeolite had limited ability to reduce the concentration of sodium ions (loading 2.1 g Na/kg zeolite) with rapid breakthrough observed. It was concluded that natural zeolites may not be suitable for the removal of cations from coal seam gas water without improvement of their physical properties.
Resumo:
This paper reports a numerical study of the laminar conjugate natural convection heat transfer with and without the interaction of the surface radiation in a horizontal cylindrical annulus formed between an inner heat generating solid circular cylinder and an outer isothermal circular boundary. Numerical solutions are obtained by solving the governing equations with a pressure correction method on a collocated (non-staggered) mesh. Steady-state results are presented for the flow and temperature distributions and Nusselt numbers for the heat generation based Grashof number ranging from 10(7) to 10(10), solid-to-fluid thermal conductivity ratios of 1, 5, 10, 50 and 100, radius ratios of 0.226 and 0.452 and surface emissivities of 0-0.8 with air as the working medium. It is observed that surface radiation reduces the convective heat transfer in the annulus compared to the pure natural convection case and enhances the overall Nusselt number.
Resumo:
We present four new reinforcement learning algorithms based on actor-critic, natural-gradient and functi approximation ideas,and we provide their convergence proofs. Actor-critic reinforcement learning methods are online approximations to policy iteration in which the value-function parameters are estimated using temporal difference learning and the policy parameters are updated by stochastic gradient descent. Methods based on policy gradients in this way are of special interest because of their compatibility with function-approximation methods, which are needed to handle large or infinite state spaces. The use of temporal difference learning in this way is of special interest because in many applications it dramatically reduces the variance of the gradient estimates. The use of the natural gradient is of interest because it can produce better conditioned parameterizations and has been shown to further reduce variance in some cases. Our results extend prior two-timescale convergence results for actor-critic methods by Konda and Tsitsiklis by using temporal difference learning in the actor and by incorporating natural gradients. Our results extend prior empirical studies of natural actor-critic methods by Peters, Vijayakumar and Schaal by providing the first convergence proofs and the first fully incremental algorithms.
Resumo:
This work focuses on the factors affecting species richness, abundance and species composition of butterflies and moths in Finnish semi-natural grasslands, with a special interest in the effects of grazing management. In addition, an aim was set at evaluating the effectiveness of the support for livestock grazing in semi-natural grasslands, which is included in the Finnish agri-environment scheme. In the first field study, butterfly and moth communities in resumed semi-natural pastures were com-pared to old, annually grazed and abandoned previous pastures. Butterfly and moth species compo-sition in restored pastures resembled the compositions observed in old pastures after circa five years of resumed cattle grazing, but diversity of butterflies and moths in resumed pastures remained at a lower level compared with old pastures. None of the butterfly and moth species typical of old pas-tures had become more abundant in restored pastures compared with abandoned pastures. There-fore, it appears that restoration of butterfly and moth communities inhabiting semi-natural grass-lands requires a longer time that was available for monitoring in this study. In the second study, it was shown that local habitat quality has the largest impact on the occurrence and abundance of butterflies and moths compared to the effects of grassland patch area and connec-tivity of the regional grassland network. This emphasizes the importance of current and historical management of semi-natural grasslands on butterfly and moth communities. A positive effect of habitat connectivity was observed on total abundance of the declining butterflies and moths, sug-gesting that these species have strongest populations in well-connected habitat networks. Highest species richness and peak abundance of most individual species of butterflies and moths were generally observed in taller grassland vegetation compared with vascular plants, suggesting a preference towards less intensive management in insects. These differences between plants and their insect herbivores may be understood in the light of both (1) the higher structural diversity of tall vegetation and (2) weaker tolerance of disturbances by herbivorous insects due to their higher trophic level compared to plants. The ecological requirements of all species and species groups inhabiting semi-natural grasslands are probably never met at single restricted sites. Therefore, regional implementation of management to create differently managed areas is imperative for the conservation of different species and species groups dependent on semi-natural grasslands. With limited resources it might be reasonable to focus much of the management efforts in the densest networks of suitable habitat to minimise the risk of extinction of the declining species.
Resumo:
Transient natural convection flow on a heated cylinder buried in a semi-infinite liquid-saturated porous medium has been studied. The unsteadiness in the problem arises due to the cylinder which is heated (cooled) suddenly and then maintained at that temperature. The coupled partial differential equations governing the flow and heat transfer are cast into stream function-temperature formulation, and the solutions are obtained from the initial time to the time when steady state is reached. The heat transfer is found to change significantly with increasing time in a small time interval immediately after the start of the impulsive change, and steady state is reached after some time. The average Nusselt number is found to increase with Rayleigh number When the surface of the cylinder is suddenly cooled, there is a change in the direction of the heat transfer in a small time interval immediately after the start of the impulsive change in the surface temperature;however when the surface temperature is suddenly increased, no such phenomenon is observed.
Resumo:
Natural peptide libraries often contain cyclodepsipeptides containing alpha or beta hydroxy residues. Extracts of fungal hyphae of Isaria yield a microheterogenous cyclodepsipeptide mixture in which two classes of molecules can be identified by mass spectral fragmentation of negative ions. In the case of isaridins, which contain an alpha-hydroxy residue and a beta-amino acid residue, a characteristic product ion corresponding to a neutral loss of 72 Da is obtained. hi addition, neutral loss of water followed by a 72 Da loss is also observed. Two distinct modes of fragmentation rationalize the observed product ion distribution. The neutral loss of 72 Da has also been obtained for a roseotoxin component, which is also an alpha-hydroxy residue containing cyclodepsipeptide. In the case of isariins, which contain a beta-hydroxy acid residue, ring opening and subsequent loss of the terminal residue as an unsaturated ketene fragment, rationalizes the observed product ion formation. Fragmentation of negative ions provide characteristic neutral losses, which are diagnostic of the presence of alpha-hydroxy or beta-hydroxy residues.
Resumo:
- Objective There is rapidly growing evidence of natural recovery from cannabis use in people with psychosis, but little is known about how it occurs. This qualitative study explores what factors influence the decision to cease cannabis use, maintain cessation, and prevent relapse. - Methods Ten people with early psychosis and lifetime cannabis misuse, who had been abstinent for at least a month, were recruited from public adult mental health services. These six men and four women participated in a semi-structured qualitative interview assessing reasons for addressing cannabis use, effective change strategies, lapse contexts, and methods used to regain control. Interpretative phenomenological analysis was used to identify themes in their responses. - Results Participants had a mean age of 23 years (SD = 3.7), started using cannabis at age 13.7 (SD = 1.6), began daily use at 17 (SD = 3.1), and had abstained from cannabis for 7.9 months (SD = 5.4). Awareness of the negative impact of substance use across multiple domains and the presence of social support for cannabis cessation were seen as vital to sustained success, as was utilization of a combination of coping strategies. The ability to address pressure from substance-using peers was commonly mentioned. - Conclusions Maximally effective treatment may need to focus on eliciting a range of benefits of cessation and control strategies and on maximizing both support for change and resistance to peer pressure. Further research might focus on comparing perceived effective strategies between individuals who obtain sustained cessation versus those who relapse.
Resumo:
The RecA intein of Mycobacterium tuberculosis, a novel double-stranded DNA endonuclease, requires both Mn(2+) and ATP for efficient cleavage of the inteinless recA allele. In this study, we show that Mg(2+) alone was sufficient to stimulate PI-MtuI to cleave double-stranded DNA at ectopic sites. In the absence of Mg(2+), PI-MtuI formed complexes with topologically different forms of DNA containing ectopic recognition sequences with equal affinity but failed to cleave DNA. We observed that PI-MtuI was able to inflict double-strand breaks robustly within the ectopic recognition sequence to generate either a blunt end or 1-2-nucleotide 3'-hydroxyl overhangs. Mutational analyses of the presumptive metal ion-binding ligands (Asp(122), Asp(222), and Glu(220)) together with immunoprecipitation assays provided compelling evidence to link both the Mg(2+)- and Mn(2+) and ATP-dependent endonuclease activities to PI-MtuI. The kinetic mechanism of PI-MtuI promoted cleavage of ectopic DNA sites proceeded through a sequential mechanism with transient accumulation of nicked circular duplex DNA as an intermediate. Together, these data suggest that PI-MtuI, like group II introns, might mediate ectopic DNA transposition and hence its lateral transfer in natural populations.