947 resultados para Geology -- Queensland -- Burdekin River region
Resumo:
The Ebro River Basin, with around 85 000 km2 and located in NE Spain, is characterized by the high spatial heterogeneity of its geology, topography, climatology and land use. Rainfall is one of the most important climatic variables studied owing to its non-homogenous behaviour in event and intensity, which creates drought, water runoff and soil erosion with negative environmental and social consequences. In this work we characterized the rainfall variability pattern in the Ebro River Basin using universal multifractal (UM) analysis, which estimates the concentration of the data around the precipitation average (C1, codimension average), the degree of multiscaling behaviour in time (? index) and the maximum probable singularity in the rainfall distribution ( s). A spatial and temporal analysis of the UM parameters is applied to study the possible changes. With this porpoise, 60 daily rainfall series were selected from 132 synthetic series generated by Luna and Balairón (AEMet). These daily rainfall series present a length of 60 years, from 1950 to 2009. Each one of them was subdivided (1950?1970 and 1980?2009) to analyse the difference between the two periods. The range of variation of precipitation amounts and the frequency of dry events between both periods are discussed, as well as the evolution of the UM parameters through the years.
Resumo:
Actualmente, la escasez de agua constituye un importante problema en muchos lugares del mundo. El crecimiento de la población, la creciente necesidad de alimentos, el desarrollo socio-económico y el cambio climático ejercen una importante y cada vez mayor presión sobre los recursos hídricos, a la que muchos países van a tener que enfrentarse en los próximos anos. La región Mediterránea es una de las regiones del mundo de mayor escasez de recursos hídricos, y es además una de las zonas más vulnerables al cambio climático. La mayoría de estudios sobre cambio climático prevén mayores temperaturas y una disminución de las precipitaciones, y una creciente escasez de agua debida a la disminución de recursos disponibles y al aumento de las demandas de riego. En el contexto actual de desarrollo de políticas se demanda cada vez más una mayor consideración del cambio climático en el marco de las políticas sectoriales. Sin embargo, los estudios enfocados a un solo sector no reflejan las múltiples dimensiones del los efectos del cambio climático. Numerosos estudios científicos han demostrado que el cambio climático es un fenómeno de naturaleza multi-dimensional y cuyos efectos se transmiten a múltiples escalas. Por tanto, es necesaria la producción de estudios y herramientas de análisis capaces de reflejar todas estas dimensiones y que contribuyan a la elaboración de políticas robustas en un contexto de cambio climático. Esta investigación pretende aportar una visión global de la problemática de la escasez de agua y los impactos, la vulnerabilidad y la adaptación al cambio climático en el contexto de la región mediterránea. La investigación presenta un marco integrado de modelización que se va ampliando progresivamente en un proceso secuencial y multi-escalar en el que en cada etapa se incorpora una nueva dimensión. La investigación consta de cuatro etapas que se abordan a lo largo de cuatro capítulos. En primer lugar, se estudia la vulnerabilidad económica de las explotaciones de regadío del Medio Guadiana, en España. Para ello, se utiliza un modelo de programación matemática en combinación con un modelo econométrico. A continuación, en la segunda etapa, se utiliza un modelo hidro-económico que incluye un modelo de cultivo para analizar los procesos que tienen lugar a escala de cultivo, explotación y cuenca teniendo en cuenta distintas escalas geográficas y de toma de decisiones. Esta herramienta permite el análisis de escenarios de cambio climático y la evaluación de posibles medidas de adaptación. La tercera fase consiste en el análisis de las barreras que dificultan la aplicación de procesos de adaptación para lo cual se analizan las redes socio-institucionales en la cuenca. Finalmente, la cuarta etapa aporta una visión sobre la escasez de agua y el cambio climático a escala nacional y regional mediante el estudio de distintos escenarios de futuro plausibles y los posibles efectos de las políticas en la escasez de agua. Para este análisis se utiliza un modelo econométrico de datos de panel para la región mediterránea y un modelo hidro-económico que se aplica a los casos de estudio de España y Jordania. Los resultados del estudio ponen de relieve la importancia de considerar múltiples escalas y múltiples dimensiones en el estudio de la gestión de los recursos hídricos y la adaptación al cambio climático en los contextos mediterráneos de escasez de agua estudiados. Los resultados muestran que los impactos del cambio climático en la cuenca del Guadiana y en el conjunto de España pueden comprometer la sostenibilidad del regadío y de los ecosistemas. El análisis a escala de cuenca hidrográfica resalta la importancia de las interacciones entre los distintos usuarios del agua y en concreto entre distintas comunidades de regantes, así como la necesidad de fortalecer el papel de las instituciones y de fomentar la creación de una visión común en la cuenca para facilitar la aplicación de los procesos de adaptación. Asimismo, los resultados de este trabajo evidencian también la capacidad y el papel fundamental de las políticas para lograr un desarrollo sostenible y la adaptación al cambio climático es regiones de escasez de agua tales como la región mediterránea. Especialmente, este trabajo pone de manifiesto el potencial de la Directiva Marco del Agua de la Unión Europea para lograr una efectiva adaptación al cambio climático. Sin embargo, en Jordania, además de la adaptación al cambio climático, es preciso diseñar estrategias de desarrollo sostenible más ambiciosas que contribuyan a reducir el riesgo futuro de escasez de agua. ABSTRACT Water scarcity is becoming a major concern in many parts of the world. Population growth, increasing needs for food production, socio-economic development and climate change represent pressures on water resources that many countries around the world will have to deal in the coming years. The Mediterranean region is one of the most water scarce regions of the world and is considered a climate change hotspot. Most projections of climate change envisage an increase in temperatures and a decrease in precipitation and a resulting reduction in water resources availability as a consequence of both reduced water availability and increased irrigation demands. Current policy development processes require the integration of climate change concerns into sectoral policies. However, sector-oriented studies often fail to address all the dimensions of climate change implications. Climate change research in the last years has evidenced the need for more integrated studies and methodologies that are capable of addressing the multi-scale and multi-dimensional nature of climate change. This research attempts to provide a comprehensive view of water scarcity and climate change impacts, vulnerability and adaptation in Mediterranean contexts. It presents an integrated modelling framework that is progressively enlarged in a sequential multi-scale process in which a new dimension of climate change and water resources is addressed at every stage. It is comprised of four stages, each one explained in a different chapter. The first stage explores farm-level economic vulnerability in the Spanish Guadiana basin using a mathematical programming model in combination with an econometric model. Then, in a second stage, the use of a hydro-economic modelling framework that includes a crop growth model allows for the analysis of crop, farm and basin level processes taking into account different geographical and decision-making scales. This integrated tool is used for the analysis of climate change scenarios and for the assessment of potential adaptation options. The third stage includes the analysis of barriers to the effective implementation of adaptation processes based on socioinstitutional network analysis. Finally, a regional and country level perspective of water scarcity and climate change is provided focusing on different possible socio-economic development pathways and the effect of policies on future water scarcity. For this analysis, a panel-data econometric model and a hydro-economic model are applied for the analysis of the Mediterranean region and country level case studies in Spain and Jordan. The overall results of the study demonstrate the value of considering multiple scales and multiple dimensions in water management and climate change adaptation in the Mediterranean water scarce contexts analysed. Results show that climate change impacts in the Guadiana basin and in Spain may compromise the sustainability of irrigation systems and ecosystems. The analysis at the basin level highlights the prominent role of interactions between different water users and irrigation districts and the need to strengthen institutional capacity and common understanding in the basin to enhance the implementation of adaptation processes. The results of this research also illustrate the relevance of water policies in achieving sustainable development and climate change adaptation in water scarce areas such as the Mediterranean region. Specifically, the EU Water Framework Directive emerges as a powerful trigger for climate change adaptation. However, in Jordan, outreaching sustainable development strategies are required in addition to climate change adaptation to reduce future risk of water scarcity.
Resumo:
A participatory modelling process has been conducted in two areas of the Guadiana river (the upper and the middle sub-basins), in Spain, with the aim of providing support for decision making in the water management field. The area has a semi-arid climate where irrigated agriculture plays a key role in the economic development of the region and accounts for around 90% of water use. Following the guidelines of the European Water Framework Directive, we promote stakeholder involvement in water management with the aim to achieve an improved understanding of the water system and to encourage the exchange of knowledge and views between stakeholders in order to help building a shared vision of the system. At the same time, the resulting models, which integrate the different sectors and views, provide some insight of the impacts that different management options and possible future scenarios could have. The methodology is based on a Bayesian network combined with an economic model and, in the middle Guadiana sub-basin, with a crop model. The resulting integrated modelling framework is used to simulate possible water policy, market and climate scenarios to find out the impacts of those scenarios on farm income and on the environment. At the end of the modelling process, an evaluation questionnaire was filled by participants in both sub-basins. Results show that this type of processes are found very helpful by stakeholders to improve the system understanding, to understand each others views and to reduce conflict when it exists. In addition, they found the model an extremely useful tool to support management. The graphical interface, the quantitative output and the explicit representation of uncertainty helped stakeholders to better understand the implications of the scenario tested. Finally, the combination of different types of models was also found very useful, as it allowed exploring in detail specific aspects of the water management problems.
Resumo:
The purpose of this work is to provide a description of the heavy rainfall phenomenon on statistical tools from a Spanish region. We want to quantify the effect of the climate change to verify the rapidity of its evolution across the variation of the probability distributions. Our conclusions have special interest for the agrarian insurances, which may make estimates of costs more realistically. In this work, the analysis mainly focuses on: The distribution of consecutive days without rain for each gauge stations and season. We estimate density Kernel functions and Generalized Pareto Distribution (GPD) for a network of station from the Ebro River basin until a threshold value u. We can establish a relation between distributional parameters and regional characteristics. Moreover we analyze especially the tail of the probability distribution. These tails are governed by law of power means that the number of events n can be expressed as the power of another quantity x : n(x) = x? . ? can be estimated as the slope of log-log plot the number of events and the size. The most convenient way to analyze n(x) is using the empirical probability distribution. Pr(X mayor que x) ? x-?. The distribution of rainfall over percentile of order 0.95 from wet days at the seasonal scale and in a yearly scale with the same treatment of tails than in the previous section.
Resumo:
The “Port of Sotogrande” Beach (San Roque, Cadiz, Spain) has suffered significant erosion and changes since the construction of the marina and port of Sotogrande (San Roque, Cadiz, Spain). This paper reviews the dynamical processes on Guadiaro front and establishes relationship between them. It sets from a comparative evolution of the Alboran Sea Coast outlets and bays since the Little Ice Age, which shows that the Guadiaro estuary has remained functional while all other Alboran fluvial estuaries silted to son. The study shows the evidences of the coastal impacts around the mouth, even further than mouth littoral barriers, of the port infrastructures; and it provides new elements to understand the dynamical processes on the mouth and surroundings as well. That should be fundamental for shore protection along the whole coastal stretch
Resumo:
Mountaintop removal (MTR) coal mining has had a significant influence on the water sources within the Coal River watershed of West Virginia. Using an approach such as Integrated Water Resources Management (IWRM) may improve management for the long-term protection and sustainability of the Coal River watershed‰Ûªs water resources. This Capstone project analyzes current site-specific information related to water quality and quantity and the impacts of MTR in the region, reviews current management challenges, and identifies key stakeholders to be included in IWRM planning. This information provided a foundation for the development of a preliminary IWRM coordination plan for the Coal River watershed based on IWRM principles and guidelines. It is hoped that this preliminary plan will contribute to the development of a final coordinated IWRM plan.
Resumo:
Differential SAR Interferometry (DInSAR) is a remote sensing method with the well demonstrated ability to monitor geological hazards like earthquakes, landslides and subsidence. Among all these hazards, subsidence involves the settlement of the ground surface affecting wide areas. Frequently, subsidence is induced by overexploitation of aquifers and constitutes a common problem that affects developed societies. The excessive pumping of underground water decreases the piezometric level in the subsoil and, as a consequence, increases the effective stresses with depth causing a consolidation of the soil column. This consolidation originates a settlement of ground surface that must be withstood by civil structures built on these areas. In this paper we make use of an advanced DInSAR approach - the Coherent Pixels Technique (CPT) [1] - to monitor subsidence induced by aquifer overexploitation in the Vega Media of the Segura River (SE Spain) from 1993 to the present. 28 ERS-1/2 scenes covering a time interval of about 10 years were used to study this phenomenon. The deformation map retrieved with CPT technique shows settlements of up to 80 mm at some points of the studied zone. These values agree with data obtained by means of borehole extensometers, but not with the distribution of damaged buildings, well points and basements, because the occurrence of damages also depends on the structural quality of the buildings and their foundations. The most interesting relationship observed is the one existing between piezometric changes, settlement evolution and local geology. Three main patterns of ground surface and piezometric level behaviour have been distinguished for the study zone during this period: 1) areas where deformation occurs while ground conditions remain altered (recent deformable sediments), 2) areas with no deformation (old and non-deformable materials), and 3) areas where ground deformation mimics piezometric level changes (expansive soils). The temporal relationship between deformation patterns and soil characteristics has been analysed in this work, showing a delay between them. Moreover, this technique has allowed the measurement of ground subsidence for a period (1993-1995) where no instrument information was available.
Resumo:
The Huangtupo landslide is one of the largest in the Three Gorges region, China. The county-seat town of Badong, located on the south shore between the Xiling and Wu gorges of the Yangtze River, was moved to this unstable slope prior to the construction of the Three Gorges Project, since the new Three Gorges reservoir completely submerged the location of the old city. The instability of the slope is affecting the new town by causing residential safety problems. The Huangtupo landslide provides scientists an opportunity to understand landslide response to fluctuating river water level and heavy rainfall episodes, which is essential to decide upon appropriate remediation measures. Interferometric Synthetic Aperture Radar (InSAR) techniques provide a very useful tool for the study of superficial and spatially variable displacement phenomena. In this paper, three sets of radar data have been processed to investigate the Huangtupo landslide. Results show that maximum displacements are affecting the northwest zone of the slope corresponding to Riverside slumping mass I#. The other main landslide bodies (i.e. Riverside slumping mass II#, Substation landslide and Garden Spot landslide) exhibit a stable behaviour in agreement with in situ data, although some active areas have been recognized in the foot of the Substation landslide and Garden Spot landslide. InSAR has allowed us to study the kinematic behaviour of the landslide and to identify its active boundaries. Furthermore, the analysis of the InSAR displacement time-series has helped recognize the different displacement patterns on the slope and their relationships with various triggering factors. For those persistent scatterers, which exhibit long-term displacements, they can be decomposed into a creep model (controlled by geological conditions) and a superimposed recoverable term (dependent on external factors), which appears closely correlated with reservoir water level changes close to the river's edge. These results, combined with in situ data, provide a comprehensive analysis of the Huangtupo landslide, which is essential for its management.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte de la baye d'Hocsieu et des entrées de la riviere de Chang situées dans la province de Fokyen : tirées de manuscrits hollandois, J.V. Schley direx. It was published by Pierre de Hondt in 1749. Scale [ca. 1:270,000]. Covers the Minjiang Kou region, China. Map in French and Dutch.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Asia North Lambert Conformal Conic coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, selected buildings, fortification, and temples, shoreline features, and more. Relief shown pictorially, depths by soundings.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic, paper manuscript map entitled: Map of country between the N.E. Cape-Fear River and Topsail sound, made under the direction of Capt. Wm. H. James, Chf. Engineer, by B.L. Blackford, Top. Engrs. It was drawn in 1865. Scale 1:40,000. The image inside the map neatline is georeferenced to the surface of the earth and fit to the North Carolina State Plane NAD 1983 coordinate system (in Meters) (Fipszone 3200). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, bridges, drainage, troop camps, lines of defense, selected buildings with names of landowners, mills and salt works, ground cover, swamps, and more. Relief shown by hachures. Includes also ill. of Confederate soldier with a plane table and Confederate flag, at left within margin. This layer is part of a selection of digitally scanned and georeferenced historic maps of the Civil War from the Harvard Map Collection. Many items from this selection are from a collection of maps deposited by the Military Order of the Loyal Legion of the United States Commandery of the State of Massachusetts (MOLLUS) in the Harvard Map Collection in 1938. These maps typically portray both natural and manmade features, in particular showing places of military importance. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A map of the north west parts of the United States of America, [by] John Fitch. It was published in 1785. Scale [ca. 1:3,000,000]. Covers the Old Northwest from the Great Lakes to Kentucky and the Mississippi River to the Allegany River and a portion of Lake Ontario. The image inside the map neatline is georeferenced to the surface of the earth and fit to the USA Contiguous Albers Equal Area Conic projection (Meters). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as human settlements, forts, Native American lands, roads, drainage, proposed state boundaries, and more. Relief shown by landform drawing. Includes descriptive notes. This layer is part of a selection of digitally scanned and georeferenced historic maps of New England from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Plan von der Stadt und umliegenden Gegend von Wien. It was published in 1809. Scale [ca. 1:120,000]. Map in German. Covers Vienna region, Austria along the Danube River. The image inside the map neatline is georeferenced to the surface of the earth and fit to the MGI 3-Degree Gauss Kruger coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, drainage, cities and towns, buillt-up areas, and more. Relief is shown by hachures and pictorially. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map set entitled: Vestiges of Assyria, by Felix Jones ; aided in the field operations by J.M. Hyslop ; engraved by J. & C. Walker. Map 3 entitled: Map of the country included in the angle formed by the river Tigris & the Upper Zab shewing the disposition of the various ancient sites in the vicinity of Nineveh. It was published by John Walker in 1855. Scale [ca. 1:75,000]. This layer is image 3 of 3 total images of the six sheet source map, representing the Mosul region Iraq at a scale of [ca. 1:75,000]. Map chiefly in English. Some place names given also in Arabic. This datalayer is compiled from two images of the six sheet source map that have been stitched together using image editing software to create a single image.The image inside the map neatline is georeferenced to the surface of the earth and fit to the European Datum 1950 TM42 (Transverse Mercator, Central Meridian 42) coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as ancient city ruins, drainage, canals, cities, villages, and other human settlements, roads, fortifications, selected buildings, and more. Relief shown by hachures.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is part of a set of georeferenced, raster images of the manuscript, paper map set entitled: Ch'ing-Hai upper Yellow River expedition : Rock and Simpson, 1925-27, [cartography by J.F. Rock]. Scale 1:250,000. This layer image is of Sheet II [of 10] covering a portion of the Yellow River (Huang He) region in eastern Qinghai Sheng and southern Gansu Sheng, China. The map set details the route and surrounding environs of the Arnold Arboretum's "Western China" expedition led by Joseph Rock, 1924-1927. The set covers a portion of the Yellow River (Huang He) region in south central China (Qinghai, Gansu, and Sichuan shengs (a portion of historic Tibet)). It shows features, labeled variously in English, Chinese, Wade-Giles transliteration, and Tibetan, including: rivers, streams, lakes, mountains, gorges, valleys, plateaus, plains, cities, towns, villages, provincial capitals, county seats, passes, monasteries, ruin sites, native tribe locations, and more. Relief is shown by hachures, spot heights, and landform drawings. The original manuscript map set is part of the Harvard College Library, Harvard Map Collection. "Joseph Rock traced his travels for the [Arnold] Arboretum's [Western China] 1924-1927 expedition in a colorful, hand-drawn map entitled 'Ch'ing-Hai upper Yellow River expedition.' The pen-and-ink drawing was made on ten sheets that when joined form a single, irregularly-shaped map, approximately six by eight feet in size. The individual sheets are numbered, using roman numerals; on sheet VII is a second title, 'Choni Territory, Upper and Lower T'ieh-Pu country and route to Sung-Pan, J. F. Rock, 1925-1927.' Topographical and other features are identified using a combination of English, Chinese characters, Wade-Giles transliterations and Tibetan script. Rock's attractive cursive style and use of hachures, spot heights, and landform drawings to depict relief add character to the map." -- Text from the Arnold Arboretum Web site.
Resumo:
This layer is part of a set of georeferenced, raster images of the manuscript, paper map set entitled: Ch'ing-Hai upper Yellow River expedition : Rock and Simpson, 1925-27, [cartography by J.F. Rock]. Scale 1:250,000. This layer image is of Sheet III [of 10] covering a portion of the Yellow River (Huang He) region in eastern Qinghai Sheng and southern Gansu Sheng, China. The map set details the route and surrounding environs of the Arnold Arboretum's "Western China" expedition led by Joseph Rock, 1924-1927. The set covers a portion of the Yellow River (Huang He) region in south central China (Qinghai, Gansu, and Sichuan shengs (a portion of historic Tibet)). It shows features, labeled variously in English, Chinese, Wade-Giles transliteration, and Tibetan, including: rivers, streams, lakes, mountains, gorges, valleys, plateaus, plains, cities, towns, villages, provincial capitals, county seats, passes, monasteries, ruin sites, native tribe locations, and more. Relief is shown by hachures, spot heights, and landform drawings. The original manuscript map set is part of the Harvard College Library, Harvard Map Collection. "Joseph Rock traced his travels for the [Arnold] Arboretum's [Western China] 1924-1927 expedition in a colorful, hand-drawn map entitled 'Ch'ing-Hai upper Yellow River expedition.' The pen-and-ink drawing was made on ten sheets that when joined form a single, irregularly-shaped map, approximately six by eight feet in size. The individual sheets are numbered, using roman numerals; on sheet VII is a second title, 'Choni Territory, Upper and Lower T'ieh-Pu country and route to Sung-Pan, J. F. Rock, 1925-1927.' Topographical and other features are identified using a combination of English, Chinese characters, Wade-Giles transliterations and Tibetan script. Rock's attractive cursive style and use of hachures, spot heights, and landform drawings to depict relief add character to the map." -- Text from the Arnold Arboretum Web site.