939 resultados para Galilean covariance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effect of genotype by environment interaction (GEI) on the weight of Tabapuã cattle at 240 (W240), 365 (W365) and 450 (W450) days of age. In total, 35,732 records of 8,458 Tabapuã animalswhich were born in the state of Bahia, Brazil, from 1975 to 2001, from 167 sires and 3,707 dams, were used. Two birth seasons were tested as for the environment effect: the dry (D) and rainy (R) ones. The covariance components were obtainedby a multiple-trait analysis using Bayesian inference, in which each trait was considered as being different in each season. Covariance components were estimated by software gibbs2f90. As for W240, the model was comprised of contemporary groups and cow age (in classes) as fixed effects; animal and maternal genetic additive, maternal permanent environmental and residual were considered as random effects. Concerning W365 and W450, the model included only the contemporary aged cow groups as fixed effects and the genetic additive and residual effects of the animal as the random ones. The GEI was assessed considering the genetic correlation, in which values below 0.80 indicated the presence of GEI. Regarding W365 and W450, the GEI was found in both seasons. As for post-weaning weight (W240), the effect of such interaction was not observed. ©2012 Sociedade Brasileira de Zootecnia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic correlations of selection indices and the traits considered in these indices with mature weight (MW) of Nelore females and correlated responses were estimated to determine whether current selection practices will result in an undesired correlated response in MW. Genetic trends for weaning and yearling indices and MW were also estimated. Data from 612,244 Nelore animals born between 1984 and 2010, belonging to different beef cattle evaluation programs from Brazil and Paraguay, were used. The following traits were studied: weaning conformation (WC), weaning precocity (WP), weaning muscling (WM), yearling conformation (YC), yearling precocity (YP), yearling muscling (YM), weaning and yearling indices, BW gain from birth to weaning (BWG), postweaning BW gain (PWG), scrotal circumference (SC), and MW. The variance and covariance components were estimated by Bayesian inference in a multitrait analysis, including all traits in the same analysis, using a nonlinear (threshold) animal model for visual scores and a linear animal model for the other traits. The mean direct heritabilities were 0.21 ± 0.007 (WC), 0.22 ± 0.007 (WP), 0.20 ± 0.007 (WM), 0.43 ± 0.005 (YC), 0.40 ± 0.005 (YP), 0.40 ± 0.005 (YM), 0.17 ± 0.003 (BWG), 0.21 ± 0.004 (PWG), 0.32 ± 0.001 (SC), and 0.44 ± 0.018 (MW). The genetic correlations between MW and weaning and yearling indices were positive and of medium magnitude (0.30 ± 0.01 and 0.31 ± 0.01, respectively). The genetic changes in weaning index, yearling index, and MW, expressed as units of genetic SD per year, were 0.26, 0.27, and 0.01, respectively. The genetic trend for MW was nonsignificant, suggesting no negative correlated response. The selection practice based on the use of sires with high final index giving preference for those better ranked for yearling precocity and muscling than for conformation generates only a minimal correlated response in MW. © 2013 American Society of Animal Science. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and Bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. © 2013 American Dairy Science Association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Random regression models have been widely used to estimate genetic parameters that influence milk production in Bos taurus breeds, and more recently in B. indicus breeds. With the aim of finding appropriate random regression model to analyze milk yield, different parametric functions were compared, applied to 20,524 test-day milk yield records of 2816 first-lactation Guzerat (B. indicus) cows in Brazilian herds. The records were analyzed by random regression models whose random effects were additive genetic, permanent environmental and residual, and whose fixed effects were contemporary group, the covariable cow age at calving (linear and quadratic effects), and the herd lactation curve. The additive genetic and permanent environmental effects were modeled by the Wilmink function, a modified Wilmink function (with the second term divided by 100), a function that combined third-order Legendre polynomials with the last term of the Wilmink function, and the Ali and Schaeffer function. The residual variances were modeled by means of 1, 4, 6, or 10 heterogeneous classes, with the exception of the last term of the Wilmink function, for which there were 1, from 0.20 to 0.33. Genetic correlations between adjacent records were high values (0.83-0.99), but they declined when the interval between the test-day records increased, and were negative between the first and last records. The model employing the Ali and Schaeffer function with six residual variance classes was the most suitable for fitting the data. © FUNPEC-RP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The meta-analysis was used to evaluate the performance of piglets in post-weaning period, without imposition of sanitary challenge and fed diets containing blood plasma, obtained by spray-dried process (SDBP). Piglets are faced with normal challenges in post-weaning period such as environmental stress and the substitution of the liquid diet to a solid one. References regarding sanitary challenges were disregarded in this study. Only data regarding normal and expected challenges were considered. Data were obtained from indexed journals with information extracted from the material, methods and results sections of pre-selected scientific articles. First, the database was analyzed graphically to observe the distribution of data and presence of outliers. Afterwards correlation analysis and variance-covariance analyses were carried out. The database contained a total of 23 articles. The average initial weight of the piglets was 8.02. kg (4.00-9.28. kg) and the average initial age was 27 days (14-32 days). The average duration of feeding diets containing spray-dried blood plasma (SDBP) was 9 days (6-28 days). SDBP increased the feed conversion by 20.2% (P<0.05) during the initial period. Feed conversion during the total period was 10.2% higher (P<0.05) for animals fed with SDBP. Average daily weight gain and daily feed intake were not affected (P>0.05) during the entire period, but average daily gain was higher (P<0.05) for animals fed with SDBP during the initial period. The initial age of supplementation influenced the average daily weight gain and average daily feed intake of animals fed with SDBP. Better results were obtained than those obtained for animals up to 35 days of age fed diets without added SDBP supplementation. In early post-weaning period for piglets weaned up to 35 days of age, the SDBP supplementation positively influenced the average daily weight gain and feed conversion. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major objective of this study was to estimate heritability and genetic correlations between milk yield (MY) and calving interval (CI) and lactation length (LL) in Murrah buffaloes using Bayesian inference. The database used belongs to the genetic improvement program of four buffalo herds from Brazil. To obtain the estimates of variance and covariance, bivariate analyses were performed with the Gibbs sampler, using the program MTGSAM. The heritability coefficient estimates were 0.28, 0.03 and 0.15 for MY, CI and LL, respectively. The genetic correlations between MY and LL was moderate (0.48). However, the genetic correlation between MY and CI showed large HPD regions (highest posterior density interval). Milk yield was the only trait with clear potential for genetic improvement by direct mass selection. The genetic correlation between MY and LL indicates that indirect selection using milk yield is a potentially beneficialstrategy.Theinterpretation of the estimated genetic correlation between MY and CI is difficult and could be spurious. ©2013 Sociedade Brasileira de Zootecnia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. © 2013 American Dairy Science Association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives of the present study were to estimate genetic parameters of monthly test-day milk yield (TDMY) of the first lactation of Brazilian Holstein cows using random regression (RR), and to compare the genetic gains for milk production and persistency, derived from RR models, using eigenvector indices and selection indices that did not consider eigenvectors. The data set contained monthly TDMY of 3,543 first lactations of Brazilian Holstein cows calving between 1994 and 2011. The RR model included the fixed effect of the contemporary group (herd-month-year of test days), the covariate calving age (linear and quadratic effects), and a fourth-order regression on Legendre orthogonal polynomials of days in milk (DIM) to model the population-based mean curve. Additive genetic and nongenetic animal effects were fit as RR with 4 classes of residual variance random effect. Eigenvector indices based on the additive genetic RR covariance matrix were used to evaluate the genetic gains of milk yield and persistency compared with the traditional selection index (selection index based on breeding values of milk yield until 305 DIM). The heritability estimates for monthly TDMY ranged from 0.12 ± 0.04 to 0.31 ± 0.04. The estimates of additive genetic and nongenetic animal effects correlation were close to 1 at adjacent monthly TDMY, with a tendency to diminish as the time between DIM classes increased. The first eigenvector was related to the increase of the genetic response of the milk yield and the second eigenvector was related to the increase of the genetic gains of the persistency but it contributed to decrease the genetic gains for total milk yield. Therefore, using this eigenvector to improve persistency will not contribute to change the shape of genetic curve pattern. If the breeding goal is to improve milk production and persistency, complete sequential eigenvector indices (selection indices composite with all eigenvectors) could be used with higher economic values for persistency. However, if the breeding goal is to improve only milk yield, the traditional selection index is indicated. © 2013 American Dairy Science Association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed 46,161 monthly test-day records of milk production from 7453 first lactations of crossbred dairy Gyr (Bos indicus) x Holstein cows. The following seven models were compared: standard multivariate model (M10), three reduced rank models fitting the first 2, 3, or 4 genetic principal components, and three models considering a 2-, 3-, or 4-factor structure for the genetic covariance matrix. Full rank residual covariance matrices were considered for all models. The model fitting the first two principal components (PC2) was the best according to the model selection criteria. Similar phenotypic, genetic, and residual variances were obtained with models M10 and PC2. The heritability estimates ranged from 0.14 to 0.21 and from 0.13 to 0.21 for models M10 and PC2, respectively. The genetic correlations obtained with model PC2 were slightly higher than those estimated with model M10. PC2 markedly reduced the number of parameters estimated and the time spent to reach convergence. We concluded that two principal components are sufficient to model the structure of genetic covariances between test-day milk yields. © FUNPEC-RP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)