985 resultados para Fungal endophytes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives of Participant 4 were: - Establishment and maintenance of a representative collection of AM fungal species in vivo on trap plant cultures. - Study of the effects of early mycorrhizal inoculation in the growth and health of in vitro plantlets and their subsequent behaviour in the nursery. - Effect of the mycorrhization of in vitro produced bananas and plantains on plant growth and health, under biotic stress conditions (nematode and fungi)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several ant species vary in the number of queens per colony, yet the causes and consequences of this variation remain poorly understood. In previous experiments, we found that Formica selysi workers originating from multiple-queen (=polygyne) colonies had a lower resistance to a fungal pathogen than workers originating from single-queen (=monogyne) colonies. In contrast, group diversity improved disease resistance in experimental colonies. This discrepancy between field and experimental colonies suggested that variation in social structure in the field had antagonistic effects on worker resistance, possibly through a down-regulation of the immune system balancing the positive effect of genetic diversity. Here, we examined if workers originating from field colonies with alternative social structure differed in three major components of their immune system. We found that workers from polygyne colonies had a lower bacterial growth inhibitory activity than workers from monogyne colonies. In contrast, workers from the two types of colonies did not differ significantly in bacterial cell wall lytic activity and prophenoloxidase activity. Overall, the presence of multiple queens in a colony correlated with a slight reduction in one inducible component of the immune system of individual workers. This reduced level of immune defence might explain the lower resistance of workers originating from polygyne colonies despite the positive effect of genetic diversity. More generally, these results indicate that social changes at the group level can modulate individual immune defences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxalatecarbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO2. In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Saccharomyces cerevisiae, TBF1, an essential gene, influences telomere function but also has other roles in the global regulation of transcription. We have identified a new member of the tbf1 gene family in the mammalian pathogen Pneumocystis carinii. We demonstrate by transspecies complementation that its ectopic expression can provide the essential functions of Schizosaccharomyces pombe tbf1 but that there is no rescue between fission and budding yeast orthologues. Our findings indicate that an essential function of this family of proteins has diverged in the budding and fission yeasts and suggest that effects on telomere length or structure are not the primary cause of inviability in S. pombe tbf1 null strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Timely diagnosis of invasive candidiasis (IC) remains difficult as the clinical presentation is not specific and blood cultures lack sensitivity and need a long incubation time. Thus, non-culture-based methods for diagnosing IC have been developed. Mannan antigen (Mn) and anti-mannan antibodies (A-Mn) are present in patients with IC. On behalf of the Third European Conference on Infections in Leukemia, the performance of these tests was analysed and reviewed. METHODS: The literature was searched for studies using the commercially available sandwich enzyme-linked immunosorbent assays (Platelia™, Bio-Rad Laboratories, Marnes-la-Coquette, France) for detecting Mn and A-Mn in serum. The target condition of this review was IC defined according to 2008 European Organization for Research and Treatment of Cancer/Mycoses Study Group criteria. Sensitivity, specificity and diagnostic odds ratios (DOR) were calculated for Mn, A-Mn and combined Mn/A-Mn testing. RESULTS: Overall, 14 studies that comprised 453 patients and 767 controls were reviewed. The patient populations included in the studies were mainly haematological and cancer cases in seven studies and mainly intensive care unit and surgery cases in the other seven studies. All studies but one were retrospective in design. Mn sensitivity was 58% (95% confidence interval [CI], 53-62); specificity, 93% (95% CI, 91-94) and DOR, 18 (95% CI 12-28). A-Mn sensitivity was 59% (95% CI, 54-65); specificity, 83% (95% CI, 79-97) and DOR, 12 (95% CI 7-21). Combined Mn/A-Mn sensitivity was 83% (95% CI, 79-87); specificity, 86% (95% CI, 82-90) and DOR, 58 (95% CI 27-122). Significant heterogeneity of the studies was detected. The sensitivity of both Mn and A-Mn varied for different Candida species, and it was the highest for C. albicans, followed by C. glabrata and C. tropicalis. In 73% of 45 patients with candidemia, at least one of the serological tests was positive before the culture results, with mean time advantage being 6 days for Mn and 7 days for A-Mn. In 21 patients with hepatosplenic IC, 18 (86%) had Mn or A-Mn positive test results at a median of 16 days before radiological detection of liver or spleen lesions. CONCLUSIONS: Mn and A-Mn are useful for diagnosis of IC. The performance of combined Mn/A-Mn testing is superior to either Mn or A-Mn testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The process to develop a guideline in a European setting remains a challenge. The ESCMID Fungal Infection Study Group (EFISG) successfully achieved this endeavour. After two face-to-face meetings, numerous telephone conferences, and email correspondence, an ESCMID task force (basically composed of members of the Society's Fungal Infection Study Group, EFISG) finalized the ESCMID diagnostic and management/therapeutic guideline for Candida diseases. By appreciating various patient populations at risk for Candida diseases, four subgroups were predefined, mainly ICU patients, paediatric, HIV/AIDS and patients with malignancies including haematopoietic stem cell transplantation. Besides treatment recommendations, the ESCMID guidelines provide guidance for diagnostic procedures. For the guidelines, questions were formulated to phrase the intention of a given recommendation, for example, outcome. The recommendation was the clinical intervention, which was graded by a score of A-D for the 'Strength of a recommendation'. The 'level of evidence' received a score of I-III. The author panel was approved by ESCMID, European Organisation for Research and Treatment of Cancer, European Group for Blood and Marrow Transplantation, European Society of Intensive Care Medicine and the European Confederation of Medical Mycology. The guidelines followed the framework of GRADE and Appraisal of Guidelines, Research, and Evaluation. The drafted guideline was presented at ECCMID 2011 and points of discussion occurring during that meeting were incorporated into the manuscripts. These ESCMID guidelines for the diagnosis and management of Candida diseases provide guidance for clinicians in their daily decision-making process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used the cellular slime mold, Dictyostelium discoideum (Dd), to express the Plasmodium falciparum circumsporozoite protein (CS), a potential component of a subunit vaccine against malaria. This was accomplished via an expression vector based on the discoidin I-encoding gene promoter, in which we linked a sequence coding for a Dd leader peptide to the almost complete CS coding region (pEDII-CS). CS production at both the mRNA and protein levels is induced by starving cells in a simple phosphate buffer. Variation in pH or cell density does not seem to influence CS synthesis. CS-producing cells can be grown either on their normal substrate, bacteria, or on a semi-synthetic media, without affecting CS accumulation level. The CS produced in Dd seems similar to the natural parasite protein as judged by its size and epitope recognition by a panel of monoclonal antibodies. We constructed a second expression vector in which the CS is under the control of a Dd ras promoter. CS accumulation can then be induced by external addition of cAMP. Such a tightly regulated promoter may allow expression of proteins potentially toxic to the cell. Thus, Dd could be a useful eukaryotic system to produce recombinant proteins, in particular from human or animal parasites like P. falciparum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a calorimetric assay for detection of voriconazole-resistant Aspergillus fumigatus within 8 h. Among 27 genetically distinct strains, all 21 resistant and all 6 susceptible strains were correctly identified by measurement of fungal heat production in the presence of voriconazole. This proof-of-concept study demonstrates the potential of microcalorimetry for rapid detection of azole resistance in A. fumigatus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aujourd'hui, les problèmes des maladies infectieuses concernent l'émergence d'infections difficiles à traiter, telles que les infections associées aux implants et les infections fongiques invasives chez les patients immunodéprimés. L'objectif de cette thèse était de développer des stratégies pour l'éradication des biofilms bactériens (partie 1), ainsi que d'étudier des méthodes innovantes pour la détection microbienne, pour l'établissement de nouveaux tests de sensibilité (partie 2). Le traitement des infections associées aux implants est difficile car les biofilms bactériens peuvent résister à des niveaux élevés d'antibiotiques. A ce jour, il n'y a pas de traitement optimal défini contre des infections causées par des bactéries de prévalence moindre telles que Enterococcus faecalis ou Propionibacterium acnés. Dans un premier temps, nous avons démontré une excellente activité in vitro de la gentamicine sur une souche de E. faecalis en phase stationnaire de croissance Nous avons ensuite confirmé l'activité de la gentamicine sur un biofilm précoce en modèle expérimental animal à corps étranger avec un taux de guérison de 50%. De plus, les courbes de bactéricidie ainsi que les résultats de calorimétrie ont prouvé que l'ajout de gentamicine améliorait l'activité in vitro de la daptomycine, ainsi que celle de la vancomycine. In vivo, le schéma thérapeutique le plus efficace était l'association daptomycine/gentamicine avec un taux de guérison de 55%. En établissant une nouvelle méthode pour l'évaluation de l'activité des antimicrobiens vis-à-vis de micro-organismes en biofilm, nous avons démontré que le meilleur antibiotique actif sur les biofilms à P. acnés était la rifampicine, suivi par la penicilline G, la daptomycine et la ceftriaxone. Les études conduites en modèle expérimental animal ont confirmé l'activité de la rifampicine seule avec un taux de guérison 36%. Le meilleur schéma thérapeutique était au final l'association rifampicine/daptomycine avec un taux de guérison 63%. Les associations de rifampicine avec la vancomycine ou la levofloxacine présentaient des taux de guérisons respectivement de 46% et 25%. Nous avons ensuite étudié l'émergence in vitro de la résistance à la rifampicine chez P. acnés. Nous avons observé un taux de mutations de 10"9. La caractérisation moléculaire de la résistance chez les mutant-résistants a mis en évidence l'implication de 5 mutations ponctuelles dans les domaines I et II du gène rpoB. Ce type de mutations a déjà été décrit au préalable chez d'autres espèces bactériennes, corroborant ainsi la validité de nos résultats. La deuxième partie de cette thèse décrit une nouvelle méthode d'évaluation de l'efficacité des antifongiques basée sur des mesures de microcalorimétrie isotherme. En utilisant un microcalorimètre, la chaleur produite par la croissance microbienne peut être-mesurée en temps réel, très précisément. Nous avons évalué l'activité de l'amphotéricine B, des triazolés et des échinocandines sur différentes souches de Aspergillus spp. par microcalorimétrie. La présence d'amphotéricine Β ou de triazole retardait la production de chaleur de manière concentration-dépendante. En revanche, pour les échinochandines, seule une diminution le pic de « flux de chaleur » a été observé. La concordance entre la concentration minimale inhibitrice de chaleur (CMIC) et la CMI ou CEM (définie par CLSI M38A), avec une marge de 2 dilutions, était de 90% pour l'amphotéricine B, 100% pour le voriconazole, 90% pour le pozoconazole et 70% pour la caspofongine. La méthode a été utilisée pour définir la sensibilité aux antifongiques pour d'autres types de champignons filamenteux. Par détermination microcalorimétrique, l'amphotéricine B s'est avéré être l'agent le plus actif contre les Mucorales et les Fusarium spp.. et le voriconazole le plus actif contre les Scedosporium spp. Finalement, nous avons évalué l'activité d'associations d'antifongiques vis-à-vis de Aspergillus spp. Une meilleure activité antifongique était retrouvée avec l'amphotéricine B ou le voriconazole lorsque ces derniers étaient associés aux échinocandines vis-à-vis de A. fumigatus. L'association échinocandine/amphotéricine B a démontré une activité antifongique synergique vis-à-vis de A. terreus, contrairement à l'association échinocandine/voriconazole qui ne démontrait aucune amélioration significative de l'activité antifongique. - The diagnosis and treatment of infectious diseases are today increasingly challenged by the emergence of difficult-to-manage situations, such as infections associated with medical devices and invasive fungal infections, especially in immunocompromised patients. The aim of this thesis was to address these challenges by developing new strategies for eradication of biofilms of difficult-to-treat microorganisms (treatment, part 1) and investigating innovative methods for microbial detection and antimicrobial susceptibility testing (diagnosis, part 2). The first part of the thesis investigates antimicrobial treatment strategies for infections caused by two less investigated microorganisms, Enterococcus faecalis and Propionibacterium acnes, which are important pathogens causing implant-associated infections. The treatment of implant-associated infections is difficult in general due to reduced susceptibility of bacteria when present in biofilms. We demonstrated an excellent in vitro activity of gentamicin against E. faecalis in stationary growth- phase and were able to confirm the activity against "young" biofilms (3 hours) in an experimental foreign-body infection model (cure rate 50%). The addition of gentamicin improved the activity of daptomycin and vancomycin in vitro, as determined by time-kill curves and microcalorimetry. In vivo, the most efficient combination regimen was daptomycin plus gentamicin (cure rate 55%). Despite a short duration of infection, the cure rates were low, highlighting that enterococcal biofilms remain difficult to treat despite administration of newer antibiotics, such as daptomycin. By establishing a novel in vitro assay for evaluation of anti-biofilm activity (microcalorimetry), we demonstrated that rifampin was the most active antimicrobial against P. acnes biofilms, followed by penicillin G, daptomycin and ceftriaxone. In animal studies we confirmed the anti-biofilm activity of rifampin (cure rate 36% when administered alone), as well as in combination with daptomycin (cure rate 63%), whereas in combination with vancomycin or levofloxacin it showed lower cure rates (46% and 25%, respectively). We further investigated the emergence of rifampin resistance in P. acnes in vitro. Rifampin resistance progressively emerged during exposure to rifampin, if the bacterial concentration was high (108 cfu/ml) with a mutation rate of 10"9. In resistant isolates, five point mutations of the rpoB gene were found in cluster I and II, as previously described for staphylococci and other bacterial species. The second part of the thesis describes a novel real-time method for evaluation of antifungals against molds, based on measurements of the growth-related heat production by isothermal microcalorimetry. Current methods for evaluation of antifungal agents against molds, have several limitations, especially when combinations of antifungals are investigated. We evaluated the activity of amphotericin B, triazoles (voriconazole, posaconazole) and echinocandins (caspofungin and anidulafungin) against Aspergillus spp. by microcalorimetry. The presence of amphotericin Β or a triazole delayed the heat production in a concentration-dependent manner and the minimal heat inhibition concentration (MHIC) was determined as the lowest concentration inhibiting 50% of the heat produced at 48 h. Due to the different mechanism of action echinocandins, the MHIC for this antifungal class was determined as the lowest concentration lowering the heat-flow peak with 50%. Agreement within two 2-fold dilutions between MHIC and MIC or MEC (determined by CLSI M38A) was 90% for amphotericin B, 100% for voriconazole, 90% for posaconazole and 70% for caspofungin. We further evaluated our assay for antifungal susceptibility testing of non-Aspergillus molds. As determined by microcalorimetry, amphotericin Β was the most active agent against Mucorales and Fusarium spp., whereas voriconazole was the most active agent against Scedosporium spp. Finally, we evaluated the activity of antifungal combinations against Aspergillus spp. Against A. jumigatus, an improved activity of amphotericin Β and voriconazole was observed when combined with an echinocandin. Against A. terreus, an echinocandin showed a synergistic activity with amphotericin B, whereas in combination with voriconazole, no considerable improved activity was observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The peroxisome targeting signal (PTS) required for import of the rat acyl-CoA oxidase (AOX; EC 1.3.3.6) and the Candida tropicalis multifunctional protein (MFP) in plant peroxisomes was assessed in transgenic Arabidopsis thaliana (L.) Heynh. The native rat AOX accumulated in peroxisomes in A. thaliana cotyledons and targeting was dependent on the presence of the C-terminal tripeptide S-K-L. In contrast, the native C. tropicalis MFP, containing the consensus PTS sequence A-K-I was not targeted to plant peroxisomes. Modification of the carboxy terminus to the S-K-L tripeptide also failed to deliver the MFP to peroxisomes while addition of the last 34 amino acids of the Brassica napus isocitrate lyase, containing the terminal tripeptide S-R-M, enabled import of the fusion protein into peroxisomes. These results underline the influence of the amino acids adjacent to the terminal tripeptide of the C. tropicalis MFP on peroxisomal targeting, even in the context of a protein having a consensus PTS sequence S-K-L.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For cell morphogenesis, the cell must establish distinct spatial domains at specified locations at the cell surface. Here, we review the molecular mechanisms of cell polarity in the fission yeast Schizosaccharomyces pombe. These are simple rod-shaped cells that form cortical domains at cell tips for cell growth and at the cell middle for cytokinesis. In both cases, microtubule-based systems help to shape the cell by breaking symmetry, providing endogenous spatial cues to position these sites. The plus ends of dynamic microtubules deliver polarity factors to the cell tips, leading to local activation of the GTPase cdc42p and the actin assembly machinery. Microtubule bundles contribute to positioning the division plane through the nucleus and the cytokinesis factor mid1p. Recent advances illustrate how the spatial and temporal regulation of cell polarization integrates many elements, including historical landmarks, positive and negative controls, and competition between pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the fission yeast Schizosaccharomyces pombe, septum formation and cytokinesis are dependent upon the initiation, though not the completion of mitosis. A number of cell cycle mutants which show phenotypes consistent with a defect in the regulation of septum formation have been isolated. A mutation in the S. pombe cdc16 gene leads to the formation of multiple septa without cytokinesis, suggesting that the normal mechanisms that limit the cell to the formation of a single septum in each cycle do not operate. Mutations in the S. pombe early septation mutants cdc7, cdc11, cdc14 and cdc15 lead to the formation of elongated, multinucleate cells, as a result of S phase and mitosis continuing in the absence of cytokinesis. This suggests that in these cells, the normal mechanisms which initiate cytokinesis are defective and that they are unable to respond to this by preventing further nuclear cycles. Genetic analysis has implied that the products of some of these genes may interact with that of the cdc16 gene. To understand how the processes of septation and cytokinesis are regulated and coordinated with mitosis we are studying the early septation mutants and cdc16. In this paper, we present the cloning and analysis of the cdc16 gene. Deletion of the gene shows that it is essential for cell proliferation: spores lacking a functional cdc16 gene germinate, complete mitosis and form multiple septa without undergoing cell cleavage.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dolichol-phosphate-mannose synthase catalyzes the formation of Dolichol-phosphate-mannose from Dolichol-phosphate and GDP-mannose. Analysis of the primary amino acid sequence of the yeast enzyme predicts a luminal orientation of the enzyme in the endoplasmic reticulum. We analysed the translocation of the Dolichol-phosphate-mannose synthase into dog pancreatic microsomal membranes: resistance to proteolytic attack provides evidence of its luminal orientation and asks for a reevaluation of the topology of the reaction.