977 resultados para Free material
Resumo:
Titanium flats were scribed by silicon carbide wedges over ranges of temperatures and applied strains and with lubrication. The response of the material to scribing was noted by recording the coefficient of friction, the surface morphology of track and the subsurface deformation. Additional data were obtained from (1) uniaxial compression of titanium, (2) scribing of oxygen-free high conductivity copper and (3) scribing of aluminium under dry and lubricated conditions to analyse and explain the observed variation in response of titanium to scribing with strain, temperature and lubrication.
Resumo:
Separation of dissolved heavy metals such-as Cr(VI) and Cu(II) from electroplating effluents using a new technique of emulsion-free liquid membrane (EFLM) has been studied. Experimental results show that nearly 95% extraction is obtained resulting in stripping phase enrichment up to 50 times relative to feed. It is also found that emulsion-free liquid membranes are highly efficient and superior to other types of liquid membranes.
Resumo:
Uracil excision repair is ubiquitous in all domains of life and initiated by uracil DNA glycosylases (UDGs) which excise the promutagenic base, uracil, from DNA to leave behind an abasic site (AP-site). Repair of the resulting AP-sites requires an AP-endonuclease, a DNA polymerase, and a DNA ligase whose combined activities result in either short-patch or long-patch repair. Mycobacterium tuberculosis, the causative agent of tuberculosis, has an increased risk of accumulating uracils because of its G + C-rich genome, and its niche inside host macrophages where it is exposed to reactive nitrogen and oxygen species, two major causes of cytosine deamination (to uracil) in DNA. In vitro assays to study DNA repair in this important human pathogen are limited. To study uracil excision repair in mycobacteria, we have established assay conditions using cell-free extracts of M. tuberculosis and M. smegmatis (a fast-growing mycobacterium) and oligomer or plasmid DNA substrates. We show that in mycobacteria, uracil excision repair is completed primarily via long-patch repair. In addition, we show that M. tuberculosis UdgB, a newly characterized family 5 UDG, substitutes for the highly conserved family 1 UDG, Ung, thereby suggesting that UdgB might function as backup enzyme for uracil excision repair in mycobacteria. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Epitaxial LaNiO3 metallic oxide thin films have been grown on c-axis oriented YBa2Cu3O7-delta thin films on LaAlO3 substrates by pulsed laser deposition technique and the interface formed between the two films has been examined by measuring the contact conductance of the same. The specific contact conductance of the interface measured using a modified four probe method was found to be 1.4 to 6 x 10(4) ohm(-1) cm(-2) at 77 K, There are indications that contact conductance can be brought closer to that obtained for noble metal-YBCO interface.
Resumo:
We report enhanced emission and gain narrowing in Rhodamine 590 perchlorate dye in an aqueous suspension of polystyrene microspheres. A systematic experimental study of the threshold condition for and the gain narrowing of the stimulated emission over a wide range of dye concentrations and scatterer number densities showed several interesting features, even though the transport mean free path far exceeded the system size. The conventional diffusive-reactive approximation to radiative transfer in an inhomogeneously illuminated random amplifying medium, which is valid for a transport mean-free path much smaller than the system size, is clearly inapplicable here. We propose a new probabilistic approach for the present case of dense, random, weak scatterers involving the otherwise rare and ignorable sub-mean-free-path scatterings, now made effective by the high gain in the medium, which is consistent: with experimentally observed features. (C) 1997 Optical Society of America.
Resumo:
Vapor-phase pyrolysis of Fe(CO)(5) in the presence of another carbon source such as CO or Ca He yields iron-filled or hollow nanotubes depending on the relative concentration of the carbon source. Essentially single-walled nanotubes are obtained when the C6H6/Fe(CO)(5) ratio is high. Pyrolysis of metallocenes yields metal-filled nanotubes and hollow nanotubes are obtained when metallocenes are pyrolyzed along with benzene. Metal-decorated nanotubes are also obtained by this method.
Resumo:
In this paper, the role of melt convection on the performance of heat sinks with phase change material (PCM) is investigated numerically. The heat sink consists of aluminum plate fins embedded in PCM, and is subjected to heat flux supplied from the bottom. A single-domain enthalpy-based CFD model is developed, which is capable of simulating the phase change process and the associated melt convection. The CFD model is coupled with a genetic algorithm for carrying out the optimization. Two cases are considered, namely, one without melt convection (i.e., conduction heat transfer analysis), and the other with convection. It is found that the geometrical optimizations of heat sinks are different for the two cases, indicating the importance of melt convection in the design of heat sinks with PCMs. In the case of conduction analysis, the optimum width of half fin (i.e., sum of half pitch and half fin thickness) is a constant, which is in good agreement with results reported in the literature. On the other hand, if melt convection is considered, the optimum half fin width depends on the effective thermal diffusivity due to conduction and convection. With melt convection, the optimized design results in a significant improvement of operational time.
Resumo:
Recent advances in nonsilica fiber technology have prompted the development of suitable materials for devices operating beyond 1.55 mu m. The III-V ternaries and quaternaries (AlGaIn)(AsSb) lattice matched to GaSb seem to be the obvious choice and have turned out to be promising candidates for high speed electronic and long wavelength photonic devices. Consequently, there has been tremendous upthrust in research activities of GaSb-based systems. As a matter of fact, this compound has proved to be an interesting material for both basic and applied research. At present, GaSb technology is in its infancy and considerable research has to be carried out before it can be employed for large scale device fabrication. This article presents an up to date comprehensive account of research carried out hitherto. It explores in detail the material aspects of GaSb starting from crystal growth in bulk and epitaxial form, post growth material processing to device feasibility. An overview of the lattice, electronic, transport, optical and device related properties is presented. Some of the current areas of research and development have been critically reviewed and their significance for both understanding the basic physics as well as for device applications are addressed. These include the role of defects and impurities on the structural, optical and electrical properties of the material, various techniques employed for surface and bulk defect passivation and their effect on the device characteristics, development of novel device structures, etc. Several avenues where further work is required in order to upgrade this III-V compound for optoelectronic devices are listed. It is concluded that the present day knowledge in this material system is sufficient to understand the basic properties and what should be more vigorously pursued is their implementation for device fabrication. (C) 1997 American Institute of Physics.
Resumo:
The velocity distribution function for the steady shear flow of disks (in two dimensions) and spheres (in three dimensions) in a channel is determined in the limit where the frequency of particle-wall collisions is large compared to particle-particle collisions. An asymptotic analysis is used in the small parameter epsilon, which is naL in two dimensions and na(2)L in three dimensions, where; n is the number density of particles (per unit area in two dimensions and per unit volume in three dimensions), L is the separation of the walls of the channel and a is the particle diameter. The particle-wall collisions are inelastic, and are described by simple relations which involve coefficients of restitution e(t) and e(n) in the tangential and normal directions, and both elastic and inelastic binary collisions between particles are considered. In the absence of binary collisions between particles, it is found that the particle velocities converge to two constant values (u(x), u(y)) = (+/-V, O) after repeated collisions with the wall, where u(x) and u(y) are the velocities tangential and normal to the wall, V = (1 - e(t))V-w/(1 + e(t)), and V-w and -V-w, are the tangential velocities of the walls of the channel. The effect of binary collisions is included using a self-consistent calculation, and the distribution function is determined using the condition that the net collisional flux of particles at any point in velocity space is zero at steady state. Certain approximations are made regarding the velocities of particles undergoing binary collisions :in order to obtain analytical results for the distribution function, and these approximations are justified analytically by showing that the error incurred decreases proportional to epsilon(1/2) in the limit epsilon --> 0. A numerical calculation of the mean square of the difference between the exact flux and the approximate flux confirms that the error decreases proportional to epsilon(1/2) in the limit epsilon --> 0. The moments of the velocity distribution function are evaluated, and it is found that [u(x)(2)] --> V-2, [u(y)(2)] similar to V-2 epsilon and -[u(x)u(y)] similar to V-2 epsilon log(epsilon(-1)) in the limit epsilon --> 0. It is found that the distribution function and the scaling laws for the velocity moments are similar for both two- and three-dimensional systems.
Resumo:
We demonstrate an ultrafast method for the formation of, graphene supported Pt catalysts by the co-reduction of graphene oxide and Pt salt using ethylene glycol under microwave irradiation conditions. Detailed analysis of the mechanism of formation of the hybrids indicates a synergistic co-reduction mechanism whereby the presence of the Pt ions leads to a faster reduction of GO and the presence of the defect sites on the reduced GO serves as anchor points for the heterogeneous nucleation of Pt. The resulting hybrid consists of ultrafine nanoparticles of Pt uniformly distributed on the reduced GO susbtrate. We have shown that the hybrid exhibits good catalytic activity for methanol oxidation and hydrogen conversion reactions. The mechanism is general and applicable for the synthesis of other multifunctional hybrids based on graphene.
Resumo:
A nonsimilar boundary layer analysis is presented for the problem of free convection in power-law type non-Newtonian fluids along a permeable vertical plate with variable wall temperature or heat flux distribution. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.
Resumo:
The leading order "temperature" of a dense two-dimensional granular material fluidized by external vibrations is determined. The grain interactions are characterized by inelastic collisions, but the coefficient of restitution is considered to be close to 1, so that the dissipation of energy during a collision is small compared to the average energy of a particle. An asymptotic solution is obtained where the particles are considered to be elastic in the leading approximation. The velocity distribution is a Maxwell-Boltzmann distribution in the leading approximation,. The density profile is determined by solving the momentum balance equation in the vertical direction, where the relation between the pressure and density is provided by the virial equation of state. The temperature is determined by relating the source of energy due to the vibrating surface and the energy dissipation due to inelastic collisions. The predictions of the present analysis show good agreement with simulation results at higher densities where theories for a dilute vibrated granular material, with the pressure-density relation provided by the ideal gas law, sire in error. [:S1063-651X(99)04408-6].
Resumo:
The velocity distribution for a vibrated granular material is determined in the dilute limit where the frequency of particle collisions with the vibrating surface is large compared to the frequency of binary collisions. The particle motion is driven by the source of energy due to particle collisions with the vibrating surface, and two dissipation mechanisms-inelastic collisions and air drag-are considered. In the latter case, a general form for the drag force is assumed. First, the distribution function for the vertical velocity for a single particle colliding with a vibrating surface is determined in the limit where the dissipation during a collision due to inelasticity or between successive collisions due to drag is small compared to the energy of a particle. In addition, two types of amplitude functions for the velocity of the surface, symmetric and asymmetric about zero velocity, are considered. In all cases, differential equations for the distribution of velocities at the vibrating surface are obtained using a flux balance condition in velocity space, and these are solved to determine the distribution function. It is found that the distribution function is a Gaussian distribution when the dissipation is due to inelastic collisions and the amplitude function is symmetric, and the mean square velocity scales as [[U-2](s)/(1 - e(2))], where [U-2](s) is the mean square velocity of the vibrating surface and e is the coefficient of restitution. The distribution function is very different from a Gaussian when the dissipation is due to air drag and the amplitude function is symmetric, and the mean square velocity scales as ([U-2](s)g/mu(m))(1/(m+2)) when the acceleration due to the fluid drag is -mu(m)u(y)\u(y)\(m-1), where g is the acceleration due to gravity. For an asymmetric amplitude function, the distribution function at the vibrating surface is found to be sharply peaked around [+/-2[U](s)/(1-e)] when the dissipation is due to inelastic collisions, and around +/-[(m +2)[U](s)g/mu(m)](1/(m+1)) when the dissipation is due to fluid drag, where [U](s) is the mean velocity of the surface. The distribution functions are compared with numerical simulations of a particle colliding with a vibrating surface, and excellent agreement is found with no adjustable parameters. The distribution function for a two-dimensional vibrated granular material that includes the first effect of binary collisions is determined for the system with dissipation due to inelastic collisions and the amplitude function for the velocity of the vibrating surface is symmetric in the limit delta(I)=(2nr)/(1 - e)much less than 1. Here, n is the number of particles per unit width and r is the particle radius. In this Limit, an asymptotic analysis is used about the Limit where there are no binary collisions. It is found that the distribution function has a power-law divergence proportional to \u(x)\((c delta l-1)) in the limit u(x)-->0, where u(x) is the horizontal velocity. The constant c and the moments of the distribution function are evaluated from the conservation equation in velocity space. It is found that the mean square velocity in the horizontal direction scales as O(delta(I)T), and the nontrivial third moments of the velocity distribution scale as O(delta(I)epsilon(I)T(3/2)) where epsilon(I) = (1 - e)(1/2). Here, T = [2[U2](s)/(1 - e)] is the mean square velocity of the particles.
Resumo:
Double hydroxides of the formula, Ni1-xZn2x (OH)(2) (CO3)(x). nH(2)O (x = 0.1 to 0.25) having the same structure as that of alpha-nickel hydroxide have been synthesized by partial substitution of zinc for nickel. The hydroxide having the composition x = 0.25 exhibits prolonged stability in 6 M KOH. Pasted electrodes comprising this material are rechargeable with a stabilized reversible discharge capacity of 410 +/- 15 mAh g(-1) of nickel even under suboptimal conditions of electrode fabrication. This compares favorably with the capacity values achieved for beta-nickel hydroxide (221 mAh g(-1)', This work; 297 mAh g(-1), Delahaye-Vidal and Figlarz;(1) 456 mAh g(-1), theoretical). (C) 1999 The Electrochemical Society. S0013-4651(98)01-071-4. All rights reserved.