897 resultados para Flip and Saddle-node Bifurcation
Resumo:
Malignant pleural mesothelioma (MPM) is a highly pro-inflammatory malignancy that is rapidly fatal and increasing in incidence. Cytokine signaling within the pro-inflammatory tumor microenvironment makes a critical contribution to the development of MPM and its resistance to conventional chemotherapy approaches. SMAC mimetic compounds (SMCs) are a promising class of anticancer drug that are dependent on tumor necrosis factor alpha (TNFa) signaling for their activity. As circulating TNFa expression is significantly elevated in MPM patients, we examined the sensitivity of MPM cell line models to SMCs. Surprisingly, all MPM cell lines assessed were highly resistant to SMCs either alone or when incubated in the presence of clinically relevant levels of TNFa. Further analyses revealed that MPM cells were sensitized to SMC-induced apoptosis by siRNA-mediated downregulation of the caspase 8 inhibitor FLIP, an antiapoptotic protein overexpressed in several cancer types including MPM. We have previously reported that FLIP expression is potently downregulated in MPM cells in response to the histone deacetylase inhibitor (HDACi) Vorinostat (SAHA). In this study, we demonstrate that SAHA sensitizes MPM cells to SMCs in a manner dependent on its ability to downregulate FLIP. Although treatment with SMC in the presence of TNFa promoted interaction between caspase 8 and the necrosis-promoting RIPK1, the cell death induced by combined treatment with SAHA and SMC was apoptotic and mediated by caspase 8. These results indicate that FLIP is a major inhibitor of SMC-mediated apoptosis in MPM, but that this inhibition can be overcome by the HDACi SAHA. © 2013 Macmillan Publishers Limited All rights reserved.
Resumo:
Posterior parietal cortex (PPC) constitutes a critical cortical node in the sensorimotor system in which goal-directed actions are computed. This information then must be transferred into commands suitable for hand movements to the primary motor cortex (M1). Complexity arises because reach-to-grasp actions not only require directing the hand towards the object (transport component), but also preshaping the hand according to the features of the object (grip component). Yet, the functional influence that specific PPC regions exert over ipsilateral M1 during the planning of different hand movements remains unclear in humans. Here we manipulated transport and grip components of goal-directed hand movements and exploited paired-pulse transcranial magnetic stimulation (ppTMS) to probe the functional interactions between M1 and two different PPC regions, namely superior parieto-occipital cortex (SPOC) and the anterior region of the intraparietal sulcus (aIPS), in the left hemisphere. We show that when the extension of the arm is required to contact a target object, SPOC selectively facilitates motor evoked potentials, suggesting that SPOC-M1 interactions are functionally specific to arm transport. In contrast, a different pathway, linking the aIPS and ipsilateral M1, shows enhanced functional connections during the sensorimotor planning of grip. These results support recent human neuroimaging findings arguing for specialized human parietal regions for the planning of arm transport and hand grip during goal-directed actions. Importantly, they provide new insight into the causal influences these different parietal regions exert over ipsilateral motor cortex for specific types of planned hand movements
Resumo:
The incidence of breast cancer in women with implants is increasing and will continue to do so for the foreseeable future due to the marked increase in breast implant insertion in recent years. Undoubtedly many of these women will wish to know whether the presence of implants worsens the prognosis of their breast cancer. Furthermore, the clinical management of such patients may be difficult, as aesthetic results are likely to be a major concern for women who have already undergone cosmetic surgery to the breast. There is no consensus on surgical approach to this scenario. This article reviews the literature on the prognosis of breast cancer patients with a history of augmentation mammoplasty and examines the available data regarding their surgical treatment. (c) 2007 Published by Elsevier Ltd on behalf of British Association of Plastic, Reconstructive and Aesthetic Surgeons.
Resumo:
Background: Primary chemotherapy is being given in the treatment of large and locally advanced breast cancers, but a major concern is local relapse after therapy. This paper has examined patients treated with primary chemotherapy and surgery (either breast-conserving surgery or mastectomy) and has examined the role of factors which may indicate those patients who are subsequently more likely to experience local recurrence of,disease.
Methods: A consecutive series of 173 women, with data available for 166 of these, presenting with large and locally advanced breast cancer (T2 >4 cm, T3, T4, or N2) were treated with primary chemotherapy comprising cyclophosphamide, vincristine, doxorubicin, and prednisolone and then surgery (either conservation or mastectomy with axillary surgery) followed by radiotherapy were examined.
Results: The clinical response rate of these patients was 75% (21% complete and 54% partial), with a complete pathological response rate of 15%. A total of 10 patients (6%) experienced local disease relapse, and the median time to relapse was 14 months (ranging from 3 to 40). The median survival in this group was 27 months (ranging from 13 to 78). In patients having breast conservation surgery, local recurrence occurred in 2%, and in those undergoing mastectomy 7% experience local relapse of disease. Factors predicting patients most likely to experience local recurrence were poor clinical response and residual axillary nodal disease after chemotherapy.
Conclusions: Excellent local control of disease can be achieved in patients with large and locally advanced breast cancers using a combination of primary chemotherapy, surgery and radiotherapy. However, the presence of residual tumor in the axillary lymph nodes after chemotherapy is a predictor of local recurrence and patients with a better clinical response were also less likely to experience local disease recurrence. The size and degree of pathological response did not predict patients most likely to experience recurrence of disease. (C) 2003 Excerpta Medica, Inc. All rights reserved.
Resumo:
The role of lymphoscintigraphy in sentinel node biopsy in breast cancer remains debatable. This study assesses the value of lymphoscintigraphy in axillary sentinel node biopsy in women undergoing surgery for breast cancer. Sixty-two patients underwent sentinel node biopsy using a combination of technetium-label led nanocolloid, lymphoscintigraphy and patent blue dye. Lymphoscintigraphy was successful in 84% of patients. Axillary sentinel nodes were identified intraoperatively in all these patients. Internal mammary nodes were identified on lymphoscintigraphy in 19%. Despite lymphoscintigraphy being unsuccessful in 10 patients, axillary sentinel nodes were found intraoperatively in eight of these patients. Lymphoscintigraphy did not increase the detection rate of axillary sentinel nodes and a negative scan did not preclude identification of an axillary sentinel node intraoperatively. This study questions the contribution of lymphoscintigraphy in axillary sentinel node biopsy, however its value may lie in the detection of extra-axillary nodes. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Sentinel lymph node biopsy has been investigated using combined radioactive colloid and supra vital blue dye in 27 patients with impalpable breast cancers. Sentinel nodes were identified in 25 cases (93%). Seven patients had involved nodes of whom all had a positive sentinel node. Sentinel node biopsy is ideally suited for use in impalpable breast cancers. (C) 2000 Harcourt Publishers Ltd.
Resumo:
This paper exploits an amplify-and-forward (AF) two-way relaying network (TWRN), where an energy constrained relay node harvests energy with wireless power transfer. Two bidirectional protocols, multiple access broadcast (MABC) protocol and time division broadcast (TDBC) protocol, are considered. Three wireless power transfer policies, namely, 1) dual-source (DS) power transfer; 2) single-fixed-source (SFS) power transfer; and 3) single-best-source (SBS) power transfer are proposed and well-designed based on time switching receiver architecture. We derive analytical expressions to determine the throughput both for delay-limited transmission and delay-tolerant transmission. Numerical results corroborate our analysis and show that MABC protocol achieves a higher throughput than TDBC protocol. An important observation is that SBS policy offers a good tradeoff between throughput and power.
Resumo:
Death Receptor 5 (DR5) is a pro-apoptotic cell-surface receptor that is a potential therapeutic target in cancer. Despite the potency of DR5-targeting agents in preclinical models, the translation of these effects into the clinic remains disappointing. Herein, we report an alternative approach to exploiting DR5 tumor expression using antibody-targeted, chemotherapy-loaded nanoparticles. We describe the development of an optimized polymer-based nanotherapeutic incorporating both a functionalized polyethylene glycol (PEG) layer and targeting antibodies to limit premature phagocytic clearance whilst enabling targeting of DR5-expressing tumor cells. Using the HCT116 colorectal cancer model, we show that following binding to DR5, the nanoparticles activate caspase 8, enhancing the anti-tumor activity of the camptothecin payload both in vitro and in vivo. Importantly, the combination of nanoparticle-induced DR5 clustering with camptothecin delivery overcomes resistance to DR5-induced apoptosis caused by loss of BAX or overexpression of anti-apoptotic FLIP. This novel approach may improve the clinical activity of DR5-targeted therapeutics while increasing tumor-specific delivery of systemically toxic chemotherapeutics.Molecular Therapy (2014); doi:10.1038/mt.2014.137.
Resumo:
Background: Kinesin family member 2a (KIF2A), a type of motor protein found in eukaryotic cells, is associated with development and progression of various human cancers. The role of KIF2A during breast cancer tumorigenesis and progression was studied.
Methods: Immunohistochemical staining, real time RT-PCR and western blot were used to examine the expression of KIF2A in cancer tissues and adjacent normal tissues from breast cancer patients. Patients' survival in relation to KIF2A expression was estimated using the Kaplan-Meier survival and multivariate analysis. Breast cancer cell line, MDA-MB-231 was used to study the proliferation, migration and invasion of cells following KIF2A-siRNA transfection.
Results: The expression of KIF2A in cancer tissues was higher than that in normal adjacent tissues from the same patient (P <0.05). KIF2A expression in cancer tissue with lymph node metastasis and HER2 positive cancer were higher than that in cancer tissue without (P <0.05). A negative correlation was found between KIF2A expression levels in breast cancer and the survival time of breast cancer patients (P <0.05). In addition, multivariate analysis indicated that KIF2A was an independent prognostic for outcome in breast cancer (OR: 16.55, 95% CI: 2.216-123.631, P = 0.006). The proliferation, migration and invasion of cancer cells in vitro were suppressed by KIF2A gene silencing (P <0.05).
Conclusions: KIF2A may play an important role in breast cancer progression and is potentially a novel predictive and prognostic marker for breast cancer.
Resumo:
This paper presents a new method for online determination of the Thèvenin equivalent parameters of a power system at a given node using the local PMU measurements at that node. The method takes into account the measurement errors and the changes in the system side. An analysis of the effects of changes in system side is carried out on a simple two-bus system to gain an insight of the effect of system side changes on the estimated Thévenin equivalent parameters. The proposed method uses voltage and current magnitudes as well as active and reactive powers; thus avoiding the effect of phase angle drift of the PMU and the need to synchronize measurements at different instances to the same reference. Applying the method to the IEEE 30-bus test system has shown its ability to correctly determine the Thévenin equivalent even in the presence of measurement errors and/or system side changes.
Resumo:
In this paper, a new field-programmable gate array (FPGA) identification generator circuit is introduced based on physically unclonable function (PUF) technology. The new identification generator is able to convert flip-flop delay path variations to unique n-bit digital identifiers (IDs), while requiring only a single slice per ID bit by using 1-bit ID cells formed as hard-macros. An exemplary 128-bit identification generator is implemented on ten Xilinx Spartan-6 FPGA devices. Experimental results show an uniqueness of 48.52%, and reliability of 92.41% over a 25°C to 70°C temperature range and 10% fluctuation in supply voltage
Resumo:
Today there is a growing interest in the integration of health monitoring applications in portable devices necessitating the development of methods that improve the energy efficiency of such systems. In this paper, we present a systematic approach that enables energy-quality trade-offs in spectral analysis systems for bio-signals, which are useful in monitoring various health conditions as those associated with the heart-rate. To enable such trade-offs, the processed signals are expressed initially in a basis in which significant components that carry most of the relevant information can be easily distinguished from the parts that influence the output to a lesser extent. Such a classification allows the pruning of operations associated with the less significant signal components leading to power savings with minor quality loss since only less useful parts are pruned under the given requirements. To exploit the attributes of the modified spectral analysis system, thresholding rules are determined and adopted at design- and run-time, allowing the static or dynamic pruning of less-useful operations based on the accuracy and energy requirements. The proposed algorithm is implemented on a typical sensor node simulator and results show up-to 82% energy savings when static pruning is combined with voltage and frequency scaling, compared to the conventional algorithm in which such trade-offs were not available. In addition, experiments with numerous cardiac samples of various patients show that such energy savings come with a 4.9% average accuracy loss, which does not affect the system detection capability of sinus-arrhythmia which was used as a test case.
Resumo:
In this paper, we investigate an amplify-and-forward (AF) multiple-input multiple-output - spatial division multiplexing (MIMO-SDM) cooperative wireless networks, where each network node is equipped with multiple antennas. In order to deal with the problems of signal combining at the destination and cooperative relay selection, we propose an improved minimum mean square error (MMSE) signal combining scheme for signal recovery at the destination. Additionally, we propose two distributed relay selection algorithms based on the minimum mean squared error (MSE) of the signal estimation for the cases where channel state information (CSI) from the source to the destination is available and unavailable at the candidate nodes. Simulation results demonstrate that the proposed combiner together with the proposed relay selection algorithms achieve higher diversity gain than previous approaches in both flat and frequency-selective fading channels.
Resumo:
Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motor (SRM) is one of the promising motor for such applications. This paper presents a novel SRM fault-diagnosis and fault-tolerance operation solution. Based on the traditional asymmetric half-bridge topology for the SRM driving, the central tapped winding of the SRM in modular half-bridge configuration are introduced to provide fault-diagnosis and fault-tolerance functions, which are set idle in normal conditions. The fault diagnosis can be achieved by detecting the characteristic of the excitation and demagnetization currents. An SRM fault-tolerance operation strategy is also realized by the proposed topology, which compensates for the missing phase torque under the open-circuit fault, and reduces the unbalanced phase current under the short-circuit fault due to the uncontrolled faulty phase. Furthermore, the current sensor placement strategy is also discussed to give two placement methods for low cost or modular structure. Simulation results in MATLAB/Simulink and experiments on a 750-W SRM validate the effectiveness of the proposed strategy, which may have significant implications and improve the reliability of EVs/HEVs.