767 resultados para Fermented feedstock


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lactobacillus rossiae is an obligately hetero-fermentative lactic acid bacterium, which can be isolated from a broad range of environments including sourdoughs, vegetables, fermented meat and flour, as well as the gastrointestinal tract of both humans and animals. In order to unravel distinctive genomic features of this particular species and investigate the phylogenetic positioning within the genus Lactobacillus, comparative genomics and phylogenomic approaches, followed by functional analyses were performed on L. rossiae DSM 15814(T), showing how this type strain not only occupies an independent phylogenetic branch, but also possesses genomic features underscoring its biotechnological potential. This strain in fact represents one of a small number of bacteria known to encode a complete de novo biosynthetic pathway of vitamin B-12 (in addition to other B vitamins such as folate and riboflavin). In addition, it possesses the capacity to utilize an extensive set of carbon sources, a characteristic that may contribute to environmental adaptation, perhaps enabling the strain's ability to populate different niches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Irish brown seaweeds have been identified as a potential bio-resource with potentially high specific methane yields. Anaerobic digestion is deemed the most feasible technology due to its commercial viability for handling such wet feedstock. However, the biomethane potential of seaweed is highly dependent on its chemical composition which can vary by species type, cultivation method, and time of harvest. This study aims to investigate and optimize the process for the production of biomethane from Irish brown seaweeds focusing on the key technology bottlenecks including for seaweed characterization, biomethane potential assessment, optimization of long-term anaerobic digestion and suitable pre-treatment technologies to enhance potential gas yields. Laminaria digitata and Ascophyllum nodosum were tested for seasonal variation. From the characterization and batch digestion of L. digitata, August was found to be the optimal month for harvest due to high organic matter content, low level of ash and ultimately highest biomethane yield. The specific methane yield of 53 m3 CH4 t-1 wwt in August was 4.5 times higher than the yield in December (12 m3 CH4 t-1 wwt), with ash content the key factor in seasonal variation. For A. nodosum, the optimal harvest month was October with polyphenol content found to be a more influential factor than ash. The gross energy yields from both species were evaluated in the range of 116-200 GJ ha-1 yr-1. Continuous digestion trials were subsequently designed for S. latissima and L. digitata to optimize the key digestion parameters. Results from mono-digestion and co-digestion with dairy slurry revealed that both seaweeds could be digested at maximum biomethane efficiency to a loading rate of 4 kg VS m-3 d-1. Accumulation of salt in the digesters was a concern for long term digestion and it was reasoned that suitable pretreatment may be required prior to digestion. Various pre-treatments were subsequently tested on L. digitata to enhance the gas yield. It was found that maceration after hot water washing yielded 25% more specific methane and up to 54% salt removal as compared to untreated L. digitata. The experiments undertaken aim to assist in providing a basic guideline for feasible design and operation of seaweed digesters in Ireland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whisky is a major global distilled spirit beverage. Whiskies are produced from cereal starches that are saccharified, fermented and distilled prior to spirit maturation. The strain of Saccharomyces cerevisiae employed in whisky fermentations is crucially important not only in terms of ethanol yields, but also for production of minor yeast metabolites which collectively contribute to development of spirit flavour and aroma characteristics. Distillers must therefore pay very careful attention to the strain of yeast exploited to ensure consistency of fermentation performance and spirit congener profiles. In the Scotch whisky industry, initiatives to address sustainability issues facing the industry (for example, reduced energy and water usage) have resulted in a growing awareness regarding criteria for selecting new distilling yeasts with improved efficiency. For example, there is now a desire for Scotch whisky distilling yeasts to perform under more challenging conditions such as high gravity wort fermentations. This article highlights the important roles of S. cerevisiae strains in whisky production and describes key fermentation performance attributes sought in distiller's yeast, such as high alcohol yields, stress tolerance and desirable congener profiles. We hope that the information herein will be useful for whisky producers and yeast suppliers in selecting new distilling strains of S. cerevisiae, and for the scientific community to stimulate further research in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of the processing conditions of soybean tempeh on the contents of ??glycoside isoflavones and on their bioconversion into aglycones. Different times of soaking (6, 12, and 18 hours), cooking (15, 30, and 45 minutes), and fermentation (18, 24, and 30 hours) with Rhizopus oligosporus at 37°C were evaluated for tempeh preparation. Grains from the cultivar 'BRS 267' were used, and the experiment was carried out according to a central composite design (23). The response functions comprised the contents of genistin, malonyldaidzin, malonylgenistin, daidzein, and genistein, quantified by ultraperformance liquid chromatography (UPLC). Soaking, cooking, and fermentation times change the content, profile, and distribution of the different forms of isoflavones in tempeh. The highest bioconversion of glycoside isoflavones into aglycones occurred in 6?hour soaked soybean grains, whose cotyledons were cooked for 15 minutes and subjected to 18?hour fermentation. RESUMO:O objetivo deste trabalho foi avaliar o efeito das condições de processamento do tempeh de soja sobre o conteúdo de isoflavonas ??glicosídeos e sobre sua bioconversão em agliconas. Diferentes tempos de maceração (6, 12 e 18 horas), cozimento (15, 30 e 45 minutos) e fermentação (18, 24 e 30 horas) com Rhizopus oligosporus a 37°C foram avaliados na preparação do tempeh. Foram utilizados grãos da cultivar 'BRS 267', e o experimento foi realizado de acordo com um delineamento composto central (23). As funções?respostas compreenderam o teor de genistina, malonildaidzina, malonilgenistina, daidzeína e genisteína, quantificadas por cromatografia líquida de ultraeficiência (CLUE). Os tempos de maceração, cozimento e fermentação alteraram o conteúdo, o perfil e a distribuição das diferentes formas de isoflavonas no tempeh. A maior bioconversão de ??glicosídeos em agliconas ocorreu em grãos de soja macerados por 6 horas, cujos cotilédones foram cozidos por 15 minutos e submetidos à fermentação por 18 horas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ojetivou-se desenvolver uma bebida láctea fermentada caprina adicionada de suco integral de uva, utilizando duas cepas de Lactobacillus rhamnosus, uma comercial e outra nativa, isolada a partir de queijos artesanais e selecionada em função de propriedades probióticas e tecnológicas .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF), which is intrinsically present or may be introduced in soils by inoculation, is an example of natural and renewable resource to increase plant nutrient uptake. This kind of fungi produces structures (hyphae, arbuscles and sometimes vesicles) inside the plant root cortex. This mutualistic relationship promotes plant gains in terms of water and nutrient absorption (mainly phosphorus). Biochar can benefit plant interaction with AMF, however, it can contain potentially toxic compounds such as heavy metals and organic compounds (e.g. dioxins, furans and polycyclic aromatic hydrocarbons), depending on the feedstock and pyrolysis conditions, which may damage organisms. For these reasons, the present work will approach the impacts of biochar application on soil attributes, AMF-plant symbiosis and its responses in plant growth and phosphorus uptake. Eucalyptus biochar produced at high temperatures increases sorghum growth; symbiosis with AMF; and enhances spore germination. Enhanced plant growth in the presence of high temperature biochar and AMF is a response of root branching stimulated by an additive effect between biochar characteristics and root colonization. Biochar obtained at low temperature reduces AMF spore germination; however it does not affect plant growth and symbiosis in soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Choosing natural enemies to suppress pest population has been for a long the key of biological control. Overtime the term biological control has also been applied to the use of suppressive soils, bio-disinfection and biopesticides. Biological control agents (BCA) and natural compounds, extracted or fermented from various sources, are the resources for containing phytopathogens. BCA can act through direct antagonism mechanisms or inducing hypovirulence of the pathogen. The first part of the thesis focused on mycoviruses infecting phytopathogenic fungi belonging to the genus Fusarium. The development of new approaches capable of faster dissecting the virome of filamentous fungi samples was performed. The semiconductor-based sequencer Ion Torrent™ and the nanopore-based sequencer MinION have been exploited to analyze DNA and RNA referable to viral genomes. Comparison with GeneBank accessions and sequence analysis allowed to identify more than 40 putative viral species, some of these mycovirus genera have been studied as inducers of hypovirulence in several phytopathogenic fungi, therefore future works will focus on the comparison of the morphology and physiology of the fungal strain infected and cured by the viruses identified and their possible use as a biocontrol agent. In a second part of the thesis the potential of botanical pesticides has been evaluated for the biocontrol of phloem limited phytopathogens such as phytoplasmas. The only active compounds able to control phytoplasmas are the antibiotic oxytetracyclines and in vitro direct and fast screening of new antimicrobials compounds on media is almost impossible due to the difficulty to culture phytoplasmas. For this reason, a simple and reliable screening method was developed to evaluate the effects of antimicrobials directly on phytoplasmas by an “ex-vivo” approach. Using scanning electron microscopy (SEM) in parallel with molecular tools (ddRT-PCR), the direct activity of tetracyclines on phytoplasma cells was verified, identifying also a promising compound showing similar activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the most recent years, Additive Manufacturing (AM) has drawn the attention of both academic research and industry, as it might deeply change and improve several industrial sectors. From the material point of view, AM results in a peculiar microstructure that strictly depends on the conditions of the additive process and directly affects mechanical properties. The present PhD research project aimed at investigating the process-microstructure-properties relationship of additively manufactured metal components. Two technologies belonging to the AM family were considered: Laser-based Powder Bed Fusion (LPBF) and Wire-and-Arc Additive Manufacturing (WAAM). The experimental activity was carried out on different metals of industrial interest: a CoCrMo biomedical alloy and an AlSi7Mg0.6 alloy processed by LPBF, an AlMg4.5Mn alloy and an AISI 304L austenitic stainless steel processed by WAAM. In case of LPBF, great attention was paid to the influence that feedstock material and process parameters exert on hardness, morphological and microstructural features of the produced samples. The analyses, targeted at minimizing microstructural defects, lead to process optimization. For heat-treatable LPBF alloys, innovative post-process heat treatments, tailored on the peculiar hierarchical microstructure induced by LPBF, were developed and deeply investigated. Main mechanical properties of as-built and heat-treated alloys were assessed and they were well-correlated to the specific LPBF microstructure. Results showed that, if properly optimized, samples exhibit a good trade-off between strength and ductility yet in the as-built condition. However, tailored heat treatments succeeded in improving the overall performance of the LPBF alloys. Characterization of WAAM alloys, instead, evidenced the microstructural and mechanical anisotropy typical of AM metals. Experiments revealed also an outstanding anisotropy in the elastic modulus of the austenitic stainless-steel that, along with other mechanical properties, was explained on the basis of microstructural analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A promising strategy to mitigate both the energy crisis and global warming is the development of solar fuels and chemicals using as feedstock CO2 in combination with simple molecules such as water. This process stores the solar energy into chemical bonds, leading to a carbon-neutral approach of fuels and chemicals production. Aim of this thesis was the synthesis and characterization of CaCu3Ti4O12 (CCTO)- based compounds to be used as visible light photocatalyst for CO2 to chemical conversion. Different compositions were produced doping CCTO with increasing concentration of iron into the perovskite’s A site in order to identify the materials with the highest photo- and photoelectrocatalytic properties. The most promising compositions were used to produce photoelectrodes by screen printing that were characterized by linear and cyclic voltammetry, impedance spectroscopy and Mott-Schottky analysis to evaluate the electrical conductivity and calculate the flat band potential and the number of charge carriers in the samples. The photoelectrodes were then tested in a photoelectrochemical (PEC) cell for the conversion of CO2 into fuel and chemicals. The results obtained confirm that CCTO-based materials can be considered promising materials for carbon dioxide photo-electrochemical reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this thesis work was the valorization of the main by-products obtained from olive oil production chain (wastewater and pomace) and their utilization in innovative food formulation. In the first part of the thesis, an olive mill wastewater extract rich in phenols were used in the formulation of 3 innovative meat products: beef hamburgers, cooked ham and würstels. These studies confirms that olive mill wastewaters extract rich in phenols could be an alternative for the reduction/total replacement of additives (i.e., nitrites) in ground and cooked meat preparations, which would promote the formulation of healthier clean label products and improve the sustainability of the olive oil industry with a circular economy approach, by further valorizing this olive by-product. In the second part of the thesis, the lipid composition and oxidative stability of a spreadable product obtained from a fermented and biologically de-bittered olive pomace, was assessed during a shelf-life study. This study confirmed that olive pomace represents an excellent ingredient for the formulation of functional foods In the third and last part of the thesis, carried out at the Universidad de Navarra (Pamplona, Spain), during a period abroad (3 months), three extracts obtained from purification of olive mill wastewaters, were subjected to in-vitro digestion and characterized. From the analysis of the three phenolic extracts, it emerged that the most promising extract to be used in the food field is the spry-dried one. Thanks to its formulation containing maltodextrins it manages to maintain its antioxidant capacity even after being underwent to in-vitro digestion. This thesis work is a part of the PRIN 2015 project (PROT: 20152LFKAT) "Olive phenols as multifunctional bioactives for healthier food: evaluation of simplified formulation to obtain safe meat products and new foods with higher functionality", coordinated by University of Perugia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a novel hybrid thermochemical-biological refinery integrated with power-to-x approach was developed for obtaining biopolymers (namely polyhydroxyalkanoates, PHA). Within this concept, a trilogy process schema comprising of, (i) thermochemical conversion via integrated pyrolysis-gasification technologies, (ii) anaerobic fermentation of the bioavailable products obtained through either thermochemistry or water-electrolysis for volatile fatty acids (VFA) production, (iii) and VFA-to-PHA bioconversion via an original microaerophilic-aerobic process was developed. During the first stage of proposed biorefinery where lignocellulosic (wooden) biomass was converted into, theoretically fermentable products (i.e. bioavailables) which were defined as syngas and water-soluble fraction of pyrolytic liquid (WS); biochar as a biocatalyst material; and a dense-oil as a liquid fuel. Within integrated pyrolysis - gasification process, biomass was efficiently converted into fermentable intermediates representing up to 66% of biomass chemical energy content in chemical oxygen demand (COD) basis. In the secondary stage, namely anaerobic fermentation for obtaining VFA rich streams, three different downstream process were investigated. First fermentation test was acidogenic bioconversion of WS materials obtained through pyrolysis of biomass within an original biochar-packed bioreactor, it was sustained up to 0.6 gCOD/L-day volumetric productivity (VP). Second, C1 rich syngas materials as the gaseous fraction of pyrolysis-gasification stage, was fermented within a novel char-based biofilm sparger reactor (CBSR), where up to 9.8 gCOD/L-day VP was detected. Third was homoacetogenic bioconversion within the innovative power-to-x pathway for obtaining commodities via renewable energy sources. More specifically, water-electrolysis derived H2 and CO2 as a primary greenhouse gas was successfully bio-utilized by anaerobic mixed cultures into VFA within CBSR system (VP: 18.2 gCOD/L-day). In the last stage of the developed biorefinery schema, VFA is converted into biopolymers within a new continuous microaerophilic-aerobic microplant, where up to 60% of PHA containing sludges was obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The PhD research project was a striking example of the enhancement of milling by-product and alternative protein sources from house cricket (Acheta domesticus), conceived as sustainable and renewable sources, to produce innovative food products. During milling processing of wheat and rye, several by-products with high technological and functional potential, are produced. The use of selected microbial consortia, allowed to obtain a pre-fermented ingredient for use in the bakery. The pre-ferments obtained were characterized by a high technological, functional and nutritional value, also interesting from a nutraceutical point of view. Bakery products obtained by the addition of pre-fermented ingredients were characterized by a greater quantity of aromatic molecules and an increase in SCFA, antioxidant activity, total amino acids and total phenols resulting in positive effect on the functionality. Moreover, the industrial scaling-up of pre-ferment and innovative bakery goods production, developed in this research, underlined the technological applicability of pre-fermented ingredients on a large scale. Moreover, the identification of innovative protein sources, can address the request of new sustainable ingredients able to less impact on the environment and to satisfy the food global demand. To upscale the insect production and ensure food safety of insect-based products, biotechnological formulations based on Acheta domesticus powder were optimized. The use of Yarrowia lipolytica in the biotechnological transformation of cricket powder led to the achievement of a cricket-based food ingredient characterized by a reduced content of chitin and an increase of antimicrobial and health-promoting molecules. The innovative bakery products containing cricket-based hydrolysates from Y. lipolytica possessed specific sensory, qualitative and functional characteristics to the final product. Moreover, the combination of Y. lipolytica hydrolysis and baking showed promising results regarding a reduced allergenicity in cricket-based baked products. Thus, the hydrolysate of cricket powder may represent a versatile and promising ingredient in the production of innovative foods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past 30 years, unhealthy diets and lifestyles have increased the incidence of noncommunicable diseases and are culprits of diffusion on world’s population of syndromes as obesity or other metabolic disorders, reaching pandemic proportions. In order to comply with such scenario, the food industry has tackled these challenges with different approaches, as the reformulation of foods, fortification of foods, substitution of ingredients and supplements with healthier ingredients, reduced animal protein, reduced fats and improved fibres applications. Although the technological quality of these emerging food products is known, the impact they have on the gut microbiota of consumers remains unclear. In the present PhD thesis, the recipient work was conducted to study different foods with the substitution of the industrial and market components to that of novel green oriented and sustainable ingredients. So far, this thesis included eight representative case studies of the most common substitutions/additions/fortifications in dairy, meat, and vegetable products. The products studied were: (i) a set of breads fortified with polyphenol-rich olive fiber, to replace synthetic antioxidant and preservatives, (ii) a set of Gluten-free breads fortified with algae powder, to fortify the protein content of standard GF products, (iii) different formulations of salami where nitrates were replaced by ascorbic acid and vegetal extract antioxidants and nitrate-reducers starter cultures, (iv) chocolate fiber plus D-Limonene food supplement, as a novel prebiotic formula, (v) hemp seed bran and its alkalase hydrolysate, to introduce as a supplement, (vi) milk with and without lactose, to evaluate the different impact on human colonic microbiota of healthy or lactose-intolerants, (vii) lactose-free whey fermented and/or with probiotics added, to be introduced as an alternative beverage, exploring its impact on human colonic microbiota from healthy or lactose-intolerants, and (viii) antibiotics, to assess whether maternal amoxicillin affects the colon microbiota of piglets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

My PhD project was intended, throughout the selection of probiotics from human milk and healthy vaginal environment, for the development of tailored fermented foods. According to this aim, several activities were carried out. The first one, concerning the isolation of Lactobacillus and Bifidobacterium strains from human milk to find new probiotic candidates to be included in food products showed promising results. Probiotics have been also proposed to improve female genital health and microbial strains isolated and connected with healthy vaginal ecosystem could be used to prevent or treat vaginal dysbiosis. In this context vaginal lactobacilli previously characterized for their technological features and antagonistic activity against several female uro-genital pathogens were investigated for their metabolic aptitude and additional probiotic features, showing interesting results hypothesizing their inclusion in foods. In addition, in order to preserve vaginal strains viability during food processing/digestion it was also evaluated the potential of microencapsulation by spray-drying. In this framework the results obtained were highly promising from the perspective of using encapsulated powders in food formulations. Another activity connected with the main idea to develop a food strategy for the administration of these vaginal strains was carried out. Lactobacillus crispatus BC4, was supplemented in a Squacquerone cheese, and its digestive fate was evaluated adopting SHIME® system. The results showed that during colonic fermentation, L. crispatus BC4 was metabolically active. Additionally, although probiotic delivery to humans has traditionally been associated with fermented dairy foods, recently the demand for non-dairy-alternatives as potential probiotics carrier is increasing. In this framework, my latest activity was connected with the development of fermented soy milks with encapsulated and non-encapsulated L. crispatus BC4 and L. gasseri BC9. The same fermented soy milks were also investigated for their nutritional qualities and after in vitro digestion for their specific functionality on post-menopausal fecal microbiota and protein bioaccessibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The artisanal food chain is enriched by a wide diversity of local food productions with delightful organoleptic characteristics and valuable nutritional properties. Despite their increasing worldwide popularity and appeal, several food safety challenges are addressed in artisanal facilities context suffering from less standardized processing conditions. In such scenario, recent advances in molecular typing and genomic surveillance (e.g., Whole Genome Sequencing [WGS]) represent an unprecedent solution capable of inferring sources of contamination as well as contributing to food safety along the artisanal food continuum. The overall objective of this PhD thesis was to explore potential microbial hazards among different artisanal food productions of animal origins (dairy and meat-derived) typical of the food culture and heritage landscape belonging to Mediterranean countries. Three different studies were then carried out, specifically focussing on: 1) compare the seasonal variability of microbiological quality and potential occurrence of microbial hazards in two batches of Italian artisanal fermented dairy and meat productions; 2) Investigate genetic relationships as well as virulome and resistome of foodborne pathogens isolated within dairy and meat-derived productions located in Italy, Spain, Portugal and Morocco; 3) investigate the population structure, virulome, resistome and mobilome of Klebsiella spp. isolates collected from study 1, including an extended range of public sequences.