966 resultados para Equations, Cubic.
Resumo:
The paper studies a class of a system of linear retarded differential difference equations with several parameters. It presents some sufficient conditions under which no stability changes for an equilibrium point occurs. Application of these results is given. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we study the existence of global solutions for a class of impulsive abstract functional differential equation. An application involving a parabolic system With impulses is considered. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Inspired by the theory of semigroups of growth a, we construct an evolution process of growth alpha. The abstract theory is applied to study semilinear singular non-autonomous parabolic problems. We prove that. under natural assumptions. a reasonable concept of solution can be given to Such semilinear singularly non-autonomous problems. Applications are considered to non-autonomous parabolic problems in space of Holder continuous functions and to a parabolic problem in a domain Omega subset of R(n) with a one dimensional handle.
Resumo:
It is known that retarded functional differential equations can be regarded as Banach-space-valued generalized ordinary differential equations (GODEs). In this paper, some stability concepts for retarded functional differential equations are introduced and they are discussed using known stability results for GODEs. Then the equivalence of the different concepts of stabilities considered here are proved and converse Lyapunov theorems for a very wide class of retarded functional differential equations are obtained by means of the correspondence of this class of equations with GODEs.
Resumo:
We prove the existence of ground state solutions for a stationary Schrodinger-Poisson equation in R(3). The proof is based on the mountain pass theorem and it does not require the Ambrosetti-Rabinowitz condition. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we consider an initial value problem for a class of generalized ODEs, also known as Kurzweil equations, and we prove the existence of a local semidynamical system there. Under certain perturbation conditions, we also show that this class of generalized ODEs admits a discontinuous semiflow which we shall refer to as an impulsive semidynamical system. As a consequence, we obtain LaSalle`s invariance principle for such a class of generalized ODEs. Due to the importance of LaSalle`s invariance principle in studying stability of differential systems, we include an application to autonomous ordinary differential systems with impulse action at variable times. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This paper describes a collocation method for numerically solving Cauchy-type linear singular integro-differential equations. The numerical method is based on the transformation of the integro-differential equation into an integral equation, and then applying a collocation method to solve the latter. The collocation points are chosen as the Chebyshev nodes. Uniform convergence of the resulting method is then discussed. Numerical examples are presented and solved by the numerical techniques.
Resumo:
A finite difference technique, based on a projection method, is developed for solving the dynamic three-dimensional Ericksen-Leslie equations for nematic liquid crystals subject to a strong magnetic field. The governing equations in this situation are derived using primitive variables and are solved using the ideas behind the GENSMAC methodology (Tome and McKee [32]; Tome et al. [34]). The resulting numerical technique is then validated by comparing the numerical solution against an analytic solution for steady three-dimensional flow between two-parallel plates subject to a strong magnetic field. The validated code is then employed to solve channel flow for which there is no analytic solution. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The spectral theory for linear autonomous neutral functional differential equations (FDE) yields explicit formulas for the large time behaviour of solutions. Our results are based on resolvent computations and Dunford calculus, applied to establish explicit formulas for the large time behaviour of solutions of FDE. We investigate in detail a class of two-dimensional systems of FDE. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We present a sufficient condition for a zero of a function that arises typically as the characteristic equation of a linear functional differential equations of neutral type, to be simple and dominant. This knowledge is useful in order to derive the asymptotic behaviour of solutions of such equations. A simple characteristic equation, arisen from the study of delay equations with small delay, is analyzed in greater detail. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we study binary differential equations a(x, y)dy (2) + 2b(x, y) dx dy + c(x, y)dx (2) = 0, where a, b, and c are real analytic functions. Following the geometric approach of Bruce and Tari in their work on multiplicity of implicit differential equations, we introduce a definition of the index for this class of equations that coincides with the classical Hopf`s definition for positive binary differential equations. Our results also apply to implicit differential equations F(x, y, p) = 0, where F is an analytic function, p = dy/dx, F (p) = 0, and F (pp) not equal aEuro parts per thousand 0 at the singular point. For these equations, we relate the index of the equation at the singular point with the index of the gradient of F and index of the 1-form omega = dy -aEuro parts per thousand pdx defined on the singular surface F = 0.
Synthesis, characterization and catalytic evaluation of cubic ordered mesoporous iron-silicon oxides
Resumo:
Iron was successfully incorporated in FDU-1 type cubic ordered mesoporous silica by a simple direct synthesis route. The (Fe/FDU-1) samples were characterized by Rutherford back-scattering spectrometry (RBS), small angle X-ray scattering (SAXS). N(2) sorption isotherm, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The resulting material presented an iron content of about 5%. Prepared at the usual acid pH of -0.3, the composite was mostly formed by amorphous silica and hematite with a quantity of Fe(2+) present in the structure. The samples prepared with adjusted pH values (2 and 3.5) were amorphous. The samples` average pore diameter was around 12.0 nm and BET specific surface area was of 680 m(2) g(-1). Although the iron-incorporated material presented larger lattice parameter, about 25 nm compared to pure FDU-1, the Fe/FDU-1 composite still maintained its cubic ordered fcc mesoporous structure before and after the template removal at 540 degrees C. The catalytic performance of Fe/FDU-1 was investigated in the catalytic oxidation of Black Remazol B dye using a catalytic ozonation process. The results indicated that Fe/FDU-1 prepared at the usual acid pH exhibited high catalytic activity in the mineralization of this pollutant when compared to the pure FDU-1. Fe(2)O(3) and Fe/FDU-1 prepared with higher pH of 2 and 3.5. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO(2)-Y(2)O(3) solid solutions, the presence at room temperature of three different phases depending on Y(2)O(3) content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO(2)-Y(2)O(3) solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro)crystals. The compositional boundaries between both tetragonal forms and between tetragonal and cubic phases were also determined. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this article dedicated to Professor V. Lakshmikantham on the occasion of the celebration of his 84th birthday, we announce new results concerning the existence and various properties of an evolution system UA+B(t, s)(0 <= s <= t <= T) generated by the sum -(A(t)+B(t)) of two linear, time-dependent and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing G(B) for the algebra of all linear bounded operators on B, we can express UA+B(t, s)(0 <= s <= t <= T) as the strong limit in L(B) of a product of the holomorphic contraction semigroups generated by -A(t) and -B(t), thereby getting a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t)+B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND D-t epsilon[0,D-T](A(t)+B(t)) everywhere dense in B. We then mention several possible applications of our product formula to various classes of non-autonomous parabolic initial-boundary value problems, as well as to evolution problems of Schrodinger type related to the theory of time-dependent singular perturbations of self-adjoint operators in quantum mechanics. We defer all the proofs and all the details of the applications to a separate publication. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Periodic first-principles calculations based on density functional theory at the B3LYP level has been carried out to investigate the photoluminescence (PL) emission of BaZrO(3) assembled nanoparticles at room temperature. The defect created in the nanocrystals and their resultant electronic features lead to a diversification of electronic recombination within the BaZrO(3) band gap. Its optical phenomena are discussed in the light of photoluminescence emission at the green-yellow region around 570 nm. The theoretical model for displaced atoms and/or angular changes leads to the breaking of the local symmetry, which is based on the refined structure provided by Rietveld methodology. For each situation a band structure, charge mapping, and density of states were built and analyzed. X-ray diffraction (XRD) patterns, UV-vis measurements, and field emission scanning electron microscopy (FE-SEM) images are essential for a full evaluation of the crystal structure and morphology.