969 resultados para Electrocatalytic hydrogenation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrodeposition of the phenothiazine mediator titrant toluidine blue onto a glassy carbon substrate at an appropriate potential was used to construct a toluidine blue chemically modified electrode (CME) exhibiting electrocatalytic reduction for myoglobin and hemoglobin. The CME catalyzed the hemoprotein electroreduction at the reduction potential of the mediator molecule. When the CME as used as a detector for flow injection analysis at a constant applied potential of -0.30 V vs. a saturated calomel electrode, it gave detection limits of 20 and 50 ng (1.2 and 0.78 pmol) injected myoglobin and hemoglobin, respectively, with a dynamic linear concentration range over 2 orders of magnitude. After a brief equilibration period, the CME retained nearly 90% of its initial myoglobin response over 8 hours of continuous exposure to the flow-through system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface structure of glassy carbon electrode subjected to "galvanostat" pretreat- ment and its electrocatalytic behaviour in the presence of ascorbic acid, catechol and hydroquinone were studied by means of cyclic voltammetry, chronoamperometry, chronocoulometry and scanning electron microscopy. The electrocatalytic mechanism was discussed, which was due to the adsorption and the catalysis of functional groups at the electrode surface. Three separated peaks from the mixture of catecnol, hydroq...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic copper nanostructures of different morphologies were synthesized by a surfactant-free electrochemical method. Single crystal nature of the nanostructures was revealed from their X-ray diffraction and electron diffraction patterns. Mechanism of dendrite formation was discussed from thermodynamic aspects using the concept of supersaturation. Supersaturation of the copper metal reduced on the surface of the electrode was the crucial factor for the generation of different morphologies. Effects of applied potential, temperature, and the solution concentration on the supersaturation were studied. The NO3- and H2O2 electroreduction ability of the dendritic materials was tested. Use of copper dendrite-modified electrode as NO3- sensor was demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

为了在线、实时、无损检测高温高压条件下运行的加氢反应器的多层器壁中原子氢的渗透速率和在任何指定剖面上的体浓度分布,发展了一种新型的检测技术.介绍了检测仪的结构设计及其特征。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rare-earth metals were hydrogenated in the presence of TiCl4 catalyst in tetrahydrofuran (THF) at 45 degreesC under normal pressure. Transmission electron micrographs showed that the re. sulting lanthanide hydrides were in the form of nanoparticles. The rate of hydrogenation decreased with increasing atomic number of the rare-earth elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variation of specific surface area and chemical reactivity of nano-KH particles treated at different temperatures has been studied, The BET surface area of nano-KH decreases with the increase of heat treatment temperature, while the chemical reactivity per unit surface increases steadily. These results indicate that the state of KH surface is changed after heat treatment. Large specific surface area of nano-KH is a major factor for its high chemical reactivity, nevertheless, the surface in an activated state with high surface energy is also an important factor for its high chemical reactivity. Nano-KH alone can polymerize styrene rapidly with the formation of polystyrene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different mechanisms for the formation of acetaldehyde and ethanol on the Rh-based catalysts were investigated by the TPR (temperature programmed reaction) method, and the active sites were studied by CO-TPD, TPSR (temperature programmed surface reaction of preadsorbed CO by H-2) and XPS techniques. The TPR results indicated that ethanol and acetaldehyde might be formed through different intermediates, whereas ethanol and methanol might result from the same intermediate. Results of CO-TPD, TPSR, and XPS showed that on the Rh-based catalyst, the structure of the active sites for the formation of C-2-oxygenates is ((RhxRhy+)-Rh-0)-O-Mn+ (M=Mn or Zr, x>>y, 2 less than or equal ton less than or equal to4). The tilt-adsorbed CO species is the main precursor for CO dissociation and the precursor for the formation of ethanol and methanol. Most of the linear and geminal adsorbed CO species desorbed below 500 K. Based on the suggested model of the active sites, detailed mechanisms for the formation of acetaldehyde and ethanol are proposed. Ethanol is formed by direct hydrogenation of the tilt-adsorbed CO molecules, followed by CH2 insertion into the surface CH2-O species and the succeeding hydrogenation step. Acetaldehyde is formed through CO insertion into the surface CH3-Rh species followed by hydrogenation, and the role of the promoters was to stabilize the intermediate of the surface acetyl species. (C) 2000 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new epoxidation system is reported in this communication. Heteropolyoxometalates catalyst/recyclable reductant 2-ethylanthrahydroquinone/O-2 is employed for epoxidation of olefins. The reductant can be regenerated by catalytic hydrogenation without consumption. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a novel method for preparing an ultra-uniform Raney-Ni catalyst, which includes melt-quenching, hydrogen treatment and leaching in an alkali solution. The resultant catalyst shows superior activity in the reaction of cyclohexanone hydrogenation. X-ray diffraction (XRD) and XPS have been employed to characterize the catalysts. As demonstrated, the pretreatment with hydrogen caused a distinct phase transfer of the Ni-Al alloys, forming more of the Ni2Al3 component. In the subsequent leaching process, the Ni2Al3 component shows high activity and the resultant catalyst exhibits high surface areas and small pores. Moreover, metallic Al in the hydrogen-pretreated alloy appeared to be leached more easily and thus the aluminium species remaining on the catalyst surface is aluminium oxide predominantly, which serves as a matrix to stabilize active Ni species on the surface. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A highly active and selective K-Pd/MnOx-ZrO2-ZnO catalyst for the one-step synthesis of 2-pentanone from ethanol is described. The possible reaction pathways for ethanol reaction over K-Pd/MnOx-ZrO2-ZnO catalyst were investigated by means of TPSR, CO2- and NH3-TPD techniques. The reactions were performed in a fixed bed continuous flow reactor. Complete conversion with high selectivity for 2-pentanone, was observed under 370 similar to 390degreesC, 2 similar to 4 MPa, GHSV = 8000 similar to 10,000 h(-1) and LHSV < 1.25 h(-1) conditions. Ethanol reactions over K-Pd/MnOx-ZrO2-ZnO catalyst showed that the catalyst could catalyze dehydrogenation. aldol. dehydration and hydrogenation reactions. Both acidic and basic properties are found on the surface of K-Pd/MnOx-ZrO2-ZnO catalyst, whose multifunctionality with the combination of basic, acid and metal sites may be responsible for the efficiency of the K-PdMnOx-ZrO2-ZnO catalyst. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis a novel theory of electrocatalysis at metal (especially noble metal)/solution interfaces was developed based on the assumption of metal adatom/incipient hydrous oxide cyclic redox transitions. Adatoms are considered as metastable, low coverage species that oxidise in-situ at potentials of often significantly cathodic to the regular metal/metal oxide transition. Because the adatom coverage is so low the electrochemical or spectroscopic response for oxidation is frequently overlooked; however, the product of such oxidation, referred to here as incipient hydrous oxide seems to be the important mediator in a wide variety of electrocatalytically demanding oxidation processes. Conversely, electrocatalytically demanding reductions apparently occur only at adatom sites at the metal/solution interface - such reactions generally occur only at potentials below, i.e. more cathodic than, the adatom/hydrous oxide transition. It was established that while silver in base oxidises in a regular manner (forming initially OHads species) at potentials above 1.0 V (RHE), there is a minor redox transition at much lower potentials, ca. o.35 v (RHE). The latter process is assumed to an adatom/hydrous oxide transition and the low coverage Ag(l) hydrous oxide (or hydroxide) species was shown to trigger or mediate the oxidation of aldehydes, e. g. HCHO. The results of a study of this system were shown to be in good agreement with a kinetic model based on the above assumptions; the similarity between this type of behaviour and enzyme-catalysed processes - both systems involve interfacial active sites - was pointed out. Similar behaviour was established for gold where both Au(l) and Au(lll) hydrous oxide mediators were shown to be the effective oxidants for different organic species. One of the most active electrocatalytic materials known at the present time is platinum. While the classical view of this high activity is based on the concept of activated chemisorption (and the important role of the latter is not discounted here) a vital role is attributed to the adatom/hydrous oxide transition. It was suggested that the well known intermediate (or anomalous) peak in the hydrogen region of the cyclic voltanmogram for platinum region is in fact due to an adatom/hydrous oxide transition. Using potential stepping procedures to minimise the effect of deactivating (COads) species, it was shown that the onset (anodic sweep) and termination (cathodic sweep) potential for the oxidation of a wide variety of organics coincided with the potential for the intermediate peak. The converse was also shown to apply; sluggish reduction reactions, that involve interaction with metal adatoms, occur at significant rates only in the region below the hydrous oxide/adatom transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this project was to prepare a range of 4-substituted 3-(2H)-furanones, and to investigate the relationship between their molecular structures and photoluminescence properties. The effects of substituents and conjugated linker unit were also investigated. After generation of the key 3(2H)-furanone heterocycle, extension of the conjugated framework at the C-4 position was achieved through Pd(0)-catalysed coupling reactions. Chapter one of the thesis comprises a review of the relavent literature and is split into three sections. These include information about the prevalence of 3-(2H)-furanones as natural products and synthetic routes to 3-(2H)-furanones in general. The synthetic routes are divided according to the synthetic precursor employed. The final section of chapter one outlines the fundamental principles and application of photoluminescence to organic compounds in general. Chapter two contains the results of the research achieved in the course of this work and a discussion of the findings. Two routes were successfully employed to generate 4-unsubstituted 3-(2H)-furanone moieties: (i) base induced cyclisation of hydroxyenones and (ii) isoxazole chemistry. A number of methods which proved ineffective in the production of furanones with the desired substitution pattern are also detailed. The majority of this study was focused on the introduction of substituents at the C-4 position of the 3-(2H)-furanone ring. This was achieved through the use of Sonogashira and Suzuki cross coupling protocols for Pd(0) catalysed C-C bond formation. The further functionalisation of some compounds was performed using transfer hydrogenation and “click chemistry” methodologies. Finally, the photophysical properties of 3-(2H)-furanones prepared in this project are discussed and the effect of substitution patterns in a complementary “push push” and “push pull” manner have also been investigated. All the experimental data and details of the synthetic methods employed, for the compounds prepared during the course of this research is contained in chapter three together with the spectroscopic and analytical properties of the compounds prepared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal powder in the range of 10-100 microns is widely employed in the production of Raney nickel type catalysts for hydrogenation reactions and hydrogen fuel cell manufacture. In this presentation we examine the modelling of powder production in a gas atomisation vessel using CFD techniques. In a fully coupled Lagrangian-Eulerian two phase scheme, liquid meal particles are tracked through the vessel following atomisation of a liquid nickel-aluminium stream. There is full momentum, heat and turbulence transport between particles and surrounding argon gas and the model predicts the position of solidification depending on particle size and undercooled condition. Maps of collision probability of particles at different stages of solidification are computed, to predict the creation of satellite defects, or to initiate solidification of undercooled droplets. The model is used to support experimental work conducted under the ESA/EU project IMPRESS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of catalytic behavior begins with one seemingly simple process, namely the hydrogenation of O to H2O on platinum. Despite the apparent simplicity its mechanism has been much debated. We have used density functional theory with,gradient corrections to examine microscopic reaction pathways for several elementary steps implicated in this fundamental catalytic process. We find that H2O formation from chemisorbed O and H atoms is a highly activated process. The largest barrier along this route, with a value of similar to1 eV, is the addition of the first H to O to produce OH. Once formed, however, OH groups are easily hydrogenated to H2O with a barrier of similar to0.2 eV. Disproportionation reactions with 1:1 and 2:1 stoichiometries of H2O and O have been examined as alternative routes for OH formation. Both stoichiometries of reaction produce OH groups with barriers that are much lower than that associated with the O + H reaction. H2O, therefore, acts as an autocatalyst in the overall H O formation process. Disproportionation with a 2:1 stoichiometry is thermodynamically and kinetically favored over disproportionation with a l:I stoichiometry. This highlights an additional (promotional) role of the second H2O molecule in this process. In support of our previous suggestion that the key intermediate in the low-temperature H2O formation reaction is a mixed OH and H2O overlayer we find that then is a very large barrier for the dissociation of the second H2O molecule in the 2:1 disproportionation process. We suggest that the proposed intermediate is then hydrogenated to H2O through a very facile proton transfer mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enantiopure trans-dihydrodiols have been obtained by a chemoenzymatic synthesis from the corresponding cis-dihydrodiol metabolites, obtained by dioxygenase-catalysed arene cis-dihydroxylation at the 2,3-bond of monosubstituted benzene substrates. This generally applicable, seven-step synthetic route to trans-dihydrodiols involves a regioselective hydrogenation and a Mitsunobu inversion of configuration at C-2, followed by benzylic bromination and dehydrobromination steps. The method has also been extended to the synthesis of both enantiomers of the trans-dihydrodiol derivatives of toluene, through substitution of a vinyl bromine atom of the corresponding trans-dihydrodiol enantiomers derived from bromobenzene. Through incorporation of hydrogenolysis and diMTPA ester diastereoisomer resolution steps into the synthetic route, both trans-dihydrodiol enantiomers of monohalobenzenes were obtained from the cis-dihydrodiols of 4-haloiodobenzenes.