913 resultados para ENZYME SECRETION
Resumo:
Arginase (L-arginine amidinohydrolase, E.C. 3.5.3.1) is a metalloenzyme that catalyses the hydrolysis Of L-arginine to L-ornithine and urea. In Leishmania spp., the biological role of the enzyme may be involved in modulating NO production upon macrophage infection. Previously, we cloned and characterized the arginase gene from Leishmania (Leishmania) amazonensis. In the present work, we successfully expressed the recombinant enzyme in E. coli and performed biochemical and biophysical characterization of both the native and recombinant enzymes. We obtained K-M and V-max. values of 23.9(+/- 0.96) mM and 192.3 mu mol/min mg protein (+/- 14.3), respectively, for the native enzyme. For the recombinant counterpart, K-M was 21.5(+/- 0.90) mM and V-max was 144.9(+/- 8.9) mu mol/min mg. Antibody against the recombinant protein confirmed a glycosomal cellular localization of the enzyme in promastigotes. Data from light scattering and small angle X-ray scattering showed that a trimeric state is the active form of the protein. We determined empirically that a manganese wash at room temperature is the best condition to purify active enzyme. The interaction of the recombinant protein with the immobilized nickel also allowed us to confirm the structural disposition of histidine at positions 3 and 324. The determined structural parameters provide substantial data to facilitate the search for selective inhibitors of parasitic sources of arginase, which could subsequently point to a candidate for leishmaniasis therapy. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The evolution of the digestive system in the Order Orthoptera is disclosed from the study of the morphophysiology of the digestive process in its major taxa. This paper deals with a cricket representing the less known suborder Ensifera Most amylase and trypsin activities occur in crop and caeca. respectively. Maltase and aminopeptidase are found in soluble and membrane-bound forms in caeca, with aminopeptidase also occurring in ventriculus. Amaranth was orally fed to Gryllodes sigillatus adults or injected into their haemolymph. The experiments were performed with starving and feeding insects with identical results. Following feeding of the dye the luminal side of the most anterior ventriculus (and in lesser amounts the midgut caeca) became heavily stained. In injected insects, the haemal side of the most posterior ventriculus was stained This suggested that the anterior ventriculus is the main site of water absorption (the caeca is a secondary one). whereas the posterior ventriculus secretes water into the gut. Thus, a putative counter-current flux of fluid from posterior to anterior ventriculus may propel digestive enzyme recycling. This was confirmed by the finding that digestive enzymes are excreted at a low rate. The fine structure of midgut caeca and ventriculus cells revealed that they have morphological features that may be related to their involvement in secretion (movement from cell to lumen) and absorption (movement from lumen to cell) of fluids. Furthermore, morphological data showed that both merocrine and apocrine secretory mechanisms occur in midgut cells. The results showed that cricket digestion differs from that in grasshopper in having (1) more membrane-bound digestive enzymes; (2) protein digestion slightly displaced toward the ventriculus; (3) midgut fluxes, and hence digestive enzyme recycling, in both starved and fed insects. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Musca domestica larvae display in anterior and middle midgut contents, a proteolytic activity with pH optimum of 3.0-3.5 and kinetic properties like cathepsin D. Three cDNAs coding for preprocathepsin D-like proteinases (ppCAD 1, ppCAD 2, ppCAD 3) were cloned from a M. domestica midgut cDNA library. The coded protein sequences included the signal peptide, propeptide and mature enzyme that has all conserved catalytic and substrate binding residues found in bovine lysosomal cathepsin D. Nevertheless, ppCAD 2 and ppCAD 3 lack the characteristic proline loop and glycosylation sites. A comparison among the sequences of cathepsin D-like enzymes from some vertebrates and those found in M. domestica and in the genomes of Aedes aegypti, Drosophila melanogaster, Tribolium castaneum, and Bombyx mori showed that only flies have enzymes lacking the proline loop (as defined by the motif: DxPxPx(G/A)P), thus resembling vertebrate pepsin. ppCAD 3 should correspond to the digestive cathepsin D-like proteinase (CAD) found in enzyme assays because: (1) it seems to be the most expressed CAD, based on the frequency of ESTs found. (2) The mRNA for CAD 3 is expressed only in the anterior and proximal middle midgut. (3) Recombinant procathepsin D-like proteinase (pCAD 3), after auto-activation has a pH optimum of 2.5-3.0 that is close to the luminal pH of M. domestica midgut. (4) Immunoblots of proteins from different tissues revealed with anti-pCAD 3 serum were positive only in samples of anterior and middle midgut tissue and contents. (5) CAD 3 is localized with immunogold inside secretory vesicles and around microvilli in anterior and middle midguit cells. The data support the view that on adapting to deal with a bacteria-rich food in an acid midgut region, M. domestica digestive CAD resulted from the same archetypical gene as the intracellular cathepsin D, paralleling what happened with vertebrates. The lack of the proline loop may be somehow associated with the extracellular role of both pepsin and digestive CAD 3. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
DNA puffs are genomic regions of polytene chromosomes that undergo developmentally controlled DNA amplification and transcription in salivary glands of sciarid flies. Here, we tested the hypothesis that DNA puff genes code for salivary proteins in Trichosia pubescens. To do that, we generated antibodies against saliva and immunoscreened a cDNA library made from salivary glands. We isolated clones corresponding to DNA puff regions, including clone D-50 that contained the entire coding sequence of the previously isolated C4B1 gene from puff 4C. Indeed, we showed that puff 4C is a DNA puff region detecting its local transcription and its extra rounds of DNA incorporation compared to neighboring regions. We further confirmed D-50 clone identity in Western blots reacted with the anti-saliva anitiserum. We detected a recombinant protein expressed by this clone that had the expected size for a full-length product of the gene. We end with a discussion of the relationship between DNA puff genes and their products.
Resumo:
Physiological conditions of low leptin levels like those observed during negative energy balance are usually characterized by the suppression of luteinizing hormone (LH) secretion and fertility. Leptin administration restores LH levels and reproductive function. Leptin action on LH secretion is thought to be mediated by the brain. However, the neuronal population that mediates this effect is still undefined. The hypothalamic ventral premammillary nucleus (PMV) neurons express a dense concentration of leptin receptors and project to brain areas related to reproductive control. Therefore, we hypothesized that the PMV is well located to mediate leptin action on LH secretion. To test our hypothesis, we performed bilateral excitotoxic lesions of the PMV in adult female rats. PMV-lesioned animals displayed a clear disruption of the estrous cycle, remaining in anestrus for 15-20 d. After apparent recovery of cyclicity, animals perfused in the afternoon of proestrus showed decreased Fos immunoreactivity in the anteroventral periventricular nucleus and in gonadotropin releasing hormone neurons. PMV-lesioned animals also displayed decreased estrogen and LH secretion on proestrus. Lesions caused no changes in mean food intake and body weight up to 7 weeks after surgery. We further tested the ability of leptin to induce LH secretion in PMV-lesioned fasted animals. We found that complete lesions of the PMV precluded leptin stimulation of LH secretion on fasting. Our findings demonstrate that the PMV is a key site linking changing levels of leptin and coordinated control of reproduction.
Resumo:
Objectives: In the present study, a novel pathway by which palmilate potentiates glucose-induced insulin secretion by pancreatic beta cells was investigated. Methods: Groups of freshly isolated islets were incubated in 10 mM glucose with palmitate, LY294002, wortmannin, and fumonism B I for measurement of insulin secretion by radioimmunoassay (RIA). Also, phosphorylation and content of AKT and PKC proteins were evaluated by immunoblotting. Results: Glucose plus palmitate and glucose plus LY294002 or wortmannin (PI3K inhibitors) increased glucose-induced insulin secretion by isolated pancreatic islets. Glucose at 10 mM induced AKT and PKC zeta/lambda phosphorylation. Palmitate (0.1 mM) abolished glucose stimulation of AKT and PKC zeta/lambda phosphorylation possibly through PI3K inhibition because both LY294002 (50 mu M) and wortmannin (100 nM) caused the same effect. The inhibitory effect of palmitate on glucose-induced AKT and PKC zeta/lambda phosphorylation and the stimulatory effect of palmitate on glucose-induced insulin secretion were not observed in the presence of fumonisin B1, all inhibitor of ceramide synthesis. Conclusions: These findings support the proposition that palmilate increases insulin release in the presence of 10 mM glucose by inhibiting PI3K activity through a mechanism that involves ceramide synthesis.
Resumo:
Nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase complex has been shown to be involved in the process of glucose-stimulated insulin secretion (GSIS). In this study, we examined the effect of palmitic acid on superoxide production and insulin secretion by rat pancreatic islets and the mechanism involved. Rat pancreatic islets were incubated during 1 h with 1 mM palmitate, 1% fatty acid free-albumin, 5.6 or 10 mM glucose and in the presence of inhibitors of NAD(P)H oxidase (DPI-diphenyleneiodonium), PKC (calphostin C) and carnitine palmitoyl transferase-I (CPT-I) (etomoxir). Superoxide content was determined by hydroethidine assays. Palmitate increased superoxide production in the presence of 5.6 and 10 mM glucose. This effect was dependent on activation of PKC and NAD(P)H oxidase. Palmitic acid oxidation was demonstrated to contribute for the fatty acid induction of superoxide production in the presence of 5.6 mM glucose. In fact, palmitate caused p47(PHOX) translocation to plasma membrane, as shown by immunohistochemistry. Exposure to palmitate for 1 h up-regulated the protein content of p47(PHOX) and the mRNA levels of p22(PHOX), gp91(PHOX), p47(PHOX), proinsulin and the G protein-coupled receptor 40 (GPR40). Fatty acid stimulation of insulin secretion in the presence of high glucose concentration was reduced by inhibition of NAD(P)H oxidase activity. In conclusion, NAD(P)H oxidase is an important source of superoxide in pancreatic islets and the activity of NAD(P)H oxidase is involved in the control of insulin secretion by palmitate. J. Cell. Physiol. 226: 1110-1117, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Positive acute effects of fatty acids (FA) on glucose-stimulated insulin secretion (GSIS) and reactive oxygen species (ROS) formation have been reported. However, those studies mainly focused on palmitic acid actions, and reports on oleic acid (OA) are scarce. In this study, the effect of physiological OA levels on beta-cell function and the mechanisms involved were investigated. Analyses of insulin secretion, FA and glucose oxidation, and ROS formation showed that, at high glucose concentration, OA treatment increases GSIS in parallel with increased ROS content. At high glucose, OA oxidation was increased, accompanied by a suppression of glucose oxidation. Using approaches for protein knockdown of FA receptor G protein-coupled receptor 40 (GPR40) and of p47(PHOX), a reduced nicotinamide adenine dinucleotide phosphate [NAD(P) H] oxidase component, we observed that GPR40 does not mediate OA effects on ROS formation and GSIS. However, in p47(PHOX) knockdown islets, OA-induced ROS formation and the inhibitory effect of OA on glucose metabolism was abolished. Similar results were obtained by pharmacological inhibition of protein kinase C, a known activator of NAD(P) H oxidase. Thus, ROS derived from OA metabolism via NAD(P) H oxidase are an inhibitor of glucose oxidation. Put together, these results indicate that OA acts as a modulator of glucose oxidation via ROS derived from its own metabolism in beta-cells. (Endocrinology 152: 3614-3621, 2011)
Resumo:
A regimen of low-protein diet induces a reduction of pancreatic islet function that is associated with development of metabolic disorders including diabetes and obesity afterward. In the present study, the influence of leucine supplementation on metabolic parameters, insulin secretion to glucose and to amino acids, as well as the levels of proteins that participate in the phosphatidylinositol 3-phosphate kinase (PI3K) pathway was investigated in malnourished rats. Four groups were fed with different diets for 12 weeks: a normal protein diet (17%) without (NP) or with leucine supplementation (NPL) or a low (6%)-protein diet without (LP) or with leucine supplementation (LPL). Leucine was given in the drinking water during the last 4 weeks. As indicated by the intraperitoneal glucose tolerance test, LPL rats exhibited increased glucose tolerance as compared with NPL group. Both NPL and LPL rats had higher circulating insulin levels than controls. The LPL rats also showed increased insulin secretion by pancreatic islets in response to glucose or arginine compared with those observed in islets from LP animals. Glucose oxidation was significantly reduced in NPL, LP, and LPL isolated islets as compared with NP; but no alteration was observed for leucine and glutamate oxidation among the 4 groups. Western blotting analysis demonstrated increased PI3K and mammalian target protein of rapamycin protein contents in LPL compared with LP islets. A significant increase in insulin-induced insulin receptor substrate I associated PI3K activation was also observed in LPL compared with LP islets. These findings indicate that leucine supplementation can augment islet function in malnourished rats and that activation of the PI3K/maminalian target protein of rapamycin pathway may play a role in this process. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Cytoskeleton controls the stability of transcripts, by mechanisms that involve mRNAs and eEF1A attachment to it. Besides, it plays a key role in protein synthesis and secretion, which seems to be impaired in somatotrophs of hypothyroid rats, whose cytoskeleton is disarranged. This study investigated the: eEF1A and GH mRNA binding to cytoskeleton plus GH mRNA translation rate and GH secretion, in sham-operated and thyroidectomized rats treated with T3 or saline, and killed 30 min thereafter. Thyroidectomy reduced: (a) pituitary F-actin content, and eEF1A plus GH mRNA binding to it; (b) GH mRNA recruitment to polysome; and (c) liver IGF-1 mRNA expression, indicating that GH mRNA stability and translation rate, as well as GH secretion were impaired. T3 acutely reversed all these changes, which points toward a nongenomic action of T3 on cytoskeleton rearrangement, which might contribute to the increase on GH mRNA translation rate and GH secretion. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The inhibitory effect of hydrogen peroxide (H(2)O(2)) on glucose-stimulated insulin secretion was previously reported. However, the precise mechanism involved was not systematically investigated. In this study, the effects of low concentrations of H(2)O(2) (5-10 mu mol/L) on glucose metabolism, intracellular calcium ([Ca(2+)](i)) oscillations, and dynamic insulin secretion in rat pancreatic islets were investigated. Low concentrations of H(2)O(2) impaired insulin secretion in the presence of high glucose levels (16.7 mmol/L). This phenomenon was observed already after 2 minutes of exposure to H(2)O(2). Glucose oxidation and the amplitude of [Ca(2+)](i); oscillations were dose-dependently suppressed by H(2)O(2). These findings indicate that low concentrations of H(2)O(2) reduce insulin secretion in the presence of high glucose levels via inhibition of glucose metabolism and consequent impairment in [Ca(2+)](i); handling. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
VLDL secretion is a regulated process that depends on the availability of lipids, apoB and MTP. Our aim was to investigate the effect of liver denervation upon the secretion of VLDL and the expression of proteins involved in this process. Denervation was achieved by applying a 85% phenol solution onto the portal tract, while control animals were treated with 9% NaCl. VLDL secretion was evaluated by the Tyloxapol method. The hepatic concentration of TAG and cholesterol, and the plasma concentration of TAG, cholesterol, VLDL-TAG, VLDL-cholesterol and HDL-cholesterol were measured, as well as mRNA expression of proteins involved in the process of VLDL assembly. Hepatic acinar distribution of MTP and apoB was evaluated by immunohistochemistry. Denervation increased plasma concentration of cholesterol (125.3 +/- 10.1 vs. 67.1 +/- 4.9 mg dL(-1)) and VLDL-cholesterol (61.6 +/- 5.6 vs. 29.4 +/- 3.3 mg dL(-1)), but HDL-cholesterol was unchanged (45.5 +/- 6.1 vs. 36.9 +/- 3.9 mg dL(-1)). Secretion of VLDL-TAG (47.5 +/- 23.8 vs. 148.5 +/- 27.4 mg dL h(-1)) and mRNA expression of CPT I and apoB were reduced (p < 0.01) in the denervated animals. MTP and apoB acinar distribution was not altered in the denervated animals, but the intensity of the reaction was reduced in relation to controls. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Bradykinin-potentiating peptides (BPPs) or proline-rich oligopeptides (PROs) isolated from the venom glands of Bothrops jararaca (Bj) were the first natural inhibitors of the angiotensin-converting enzyme (ACE) described. Bj-PRO-5a (< EKWAP), a member of this structurally related peptide family, was essential for the development of captopril, the first site-directed ACE inhibitor used for the treatment of human hypertension. Nowadays, more Bj-PROs have been identified with higher ACE inhibition potency compared to Bj-PRO-5a. However, despite its modest inhibitory effect of ACE inhibition, Bj-PRO-5a reveals strong bradykinin-potentiating activity, suggesting the participation of other mechanisms for this peptide. In the present study, we have shown that Bj-PRO-5a induced nitric oxide (NO) production depended on muscarinic acetylcholine receptor M1 subtype (mAchR-M1) and bradykinin B(2) receptor activation, as measured by a chemiluminescence assay using a NO analyzer. Intravital microscopy based on transillumination of mice cremaster muscle also showed that both bradykinin B(2) receptor and mAchR-M1 contributed to the vasodilatation induced by Bj-PRO-5a. Moreover, Bj-PRO-5a-mediated vasodilatation was completely blocked in the presence of a NO synthase inhibitor. The importance of this work lies in the definition of novel targets for Bj-PRO-5a in addition to ACE, the structural model for captopril development. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Data obtained during routine diagnosis of human T-cell lymphotropic virus type 1 (HTLV-1) and 2 (HTLV-2) in ""at-risk"" individuals from Sao Paulo, Brazil using signal-to-cutoff (S/C) values obtained by first, second, and third generation enzyme immunoassay (EIA) kits, were compared. The highest S/C values were obtained with third generation EIA kits, but no correlation was detected between these values and specific antibody reactivity to HTLV-1, HTLV-2, or untyped HTLV (p = 0.302). In addition, use of these third generation kits resulted in HTLV-1/2 false-positive samples. In contrast, first and second generation EIA kits showed high specificity, and the second generation EIA kits showed the highest efficiency, despite lower S/C values. Using first and second generation EIA kits, significant differences in specific antibody detection of HTLV-1, relative to HTLV-2 (p = 0.019 for first generation and p < 0.001 for second generation EIA kits) and relative to untyped HTLV (p = 0.025 for first generation EIA kits), were observed. These results were explained by the composition and format of the assays. In addition, using receiver operating characteristics (ROC) analysis, a slight adjustment in cutoff values for third generation EIA kits improved their specificities and should be used when HTLV ""at-risk"" populations from this geographic area are to be evaluated. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Innate immune recognition of flagellin is shared by transmembrane TLR5 and cytosolic Nlrc4 (NOD-like receptor family CARD (caspase activation recruitment domain) domain containing 4)/Naip5 (neuronal apoptosis inhibitory protein 5). TLR5 activates inflammatory genes through MYD88 pathway, whereas Nlrc4 and Naip5 assemble multiprotein complexes called inflammasomes, culminating in caspase-1 activation, IL-1 beta/IL-18 secretion, and pyroptosis. Although both TLR5 and Naip5/Nlrc4 pathways cooperate to clear infections, little is known about the relative anti-pathogen effector mechanisms operating through each of them. Here we show that the cytosolic flagellin (FLA-BSDot) was able to activate iNOS, an enzyme previously associated with TLR5 pathway. Using Nlrc4- or Naip5-deficient macrophages, we found that both receptors are involved in iNOS activation by FLA-BSDot. Moreover, distinct from extracellular flagellin (FLA-BS), iNOS activation by intracellular flagellin is completely abrogated in the absence of caspase-1. Interestingly, IL-1 beta and IL-18 do not seem to be important for FLA-BSDot-mediated iNOS production. Together, our data defined an additional anti-pathogen effector mechanism operated through Naip5 and Nlrc4 inflammasomes and illustrated a novel signaling transduction pathway that activates iNOS.