858 resultados para Distributed Bragg reflector (DBR) laser diode
Resumo:
A simple method for measuring the radius of curvature of laser beams is introduced. It has been developed to estimate the astigmatic aberration of a diode laser. Compared with the interferornetry, this method is convenient and straightforward. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Output power fluctuations in a grating external cavity diode laser with Littman configuration are described, showing peculiar chaotic behaviors of self-pulsation at the L-I curve kink points. Different spectral characteristics with multiple peaks are observed at upper and lower state of the self-pulsation. It is found also that P-N junction voltage jumps in a same pace with the pulsation. The observed phenomena reflect competition between different longitudinal modes, and transient variation of transverse modes in addition. These experimental results may contain information about the mechanisms of the chaotic instability in strong filtered feedback semiconductor lasers. (C) 2008 Optical Society of America
Resumo:
We present the design and experimental results for a diode pumped Nd:YLF regenerative amplifier applied to amplify a nanosecond laser pulse. Numerical simulation shows that the maximum output energy and the best stability can be obtained when the regenerative amplifier operates in a saturated mode for all pulse duration and temporal profiles. Using extra post-pulse is a good method to decrease the square-pulse distortion caused by gain saturation effect. The amplifier shows output energy of 4.2mJ with a total energy gain of more than 107 and output energy stability of better than 1% rms. When extra post-pulse is added, square-pulse distortion is decreased from 1.33 to 1.17 for the amplifier that is seeded with an optical pulse of 3 ns.
Resumo:
By employing a simple model of describing three-level lasers, we have theoretically investigated the effect of photon lifetime on the output dynamics of Er-doped distributed feedback fibre lasers. And based on the theoretical analysis we have proposed a promising method to suppress self-pulsing behaviour in the fibre lasers.
Resumo:
Based on graphic analysis design method of optical resonator, a simple design expression of V-folded cavity of end-pumped solid-state lasers with TEM00 operation is described, which satisfies two criterias of the resonator design. We give numerical simulation of spot size as a function of thermal focal length using this design approach whose advantages are validated experimentally.
Resumo:
Thermal effects in Nd:YAG planar waveguide lasers with non-symmetrical claddings are discussed. The heat generated in the active core can be removed more efficiently by directly contacting the active core to the heat sink. Several cladding materials are compared to optimize the heat removal. Furthermore, uniform pumping is achieved with oblique edge-pumping technique. Using quasi-CW pumping at 1 KHz repetition rate, an average output power of 280 W with a slope efficiency of 38% is obtained with a positive unstable resonator. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The effects of Na+ doping level on the thermal conductivities, absorption and emission spectra, and fluorescence lifetimes of Yb3+ ,Na+ :CaF2 crystals were systematically studied. Sites structure, covalent force, and crystal field strength of Yb3+ :CaF2 crystals were markedly varied by codoping Na+ as charge compensator. The 2.0at% Yb3+ and 3.0at% Na+-codoped CaF2 crystal was demonstrated to operate in diode-pumped passively mode-locking scheme. Transform-limited 1 ps laser pulses were obtained, showing the crystal capable of producing ultra-short laser pulses. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Passive Q-switching of a diode-pumped Yb:LYSO laser at 1060 nm with a Yb3+ ions-doped CaF2 crystal without the excited-state absorption (ESA) was demonstrated. An average output power of 174 mW with pulse duration of 5.6 mu s and repetition rate of 27 kHz have been obtained under the unoptimized conditions. And the Q-switching conversion efficiency was as high as 51.7%. (c) 2007 Optical Society of America.
Resumo:
This paper reports that the TM3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The room-temperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Omega(2)=9.3155 x 10(-20) cm(2), Omega(4)=8.4103 x 10(-20) cm(2), Omega(6)=1.5908 x 10(-20) cm(2), the fluorescence lifetime is calculated to be 2.03 ms for F-3(4) -> H-3(6) transition, and the integrated emission cross section is 5.81 x 10(-18) cm(2). Room-temperature laser action near 2 mu m under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuous-wave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06 mu m with spectral bandwidth of similar to 13.6 nm.
Resumo:
We report on the room-temperature continuous-wave (CW) operation of a Ho:YAlO3 laser that is resonantly end pumped at 1.94 mu m by a diode-pumped thulium-doped laser in the same host. Through the use of a 1 at % Ho3+-doped 20-mm-long YAlO3 crystal (b cut), the Ho:YAlO3 laser generated 1 W of linearly polarized (E//c) output at 2118 nm and 0.55 W of E//a output at 2128.5 nm for an incident pump power of 5 W, with an output coupler transmission of 14 and 3%, respectively. An optical-to-optical conversion efficiency of 20% and a slope efficiency of 33% were achieved at 2118 nm corresponding to an incident pump power.
Resumo:
We report both continuous-wave and passively mode-locked laser actions in a Yb3+-doped gadolinium yttrium oxyorthosilicate Yb:GdySiO(5) (Yb:GYSO) crystal. Continuous-wave (CW) laser operations were compared under different pump conditions with high-power diodes of different wavelengths and fiber cores. CW mode-locking was obtained with a semiconductor saturable absorber mirror.
Resumo:
We demonstrated continuous-wave ( CW) and Q-switched operation of a room-temperature Ho: YAlO3 laser that is resonantly end-pumped by a diode-pumped Tm: YLF laser at 1.91 mu m. The CW Ho: YAlO3 laser generated 5.5 W of linearly polarized (E parallel to c) output at 2118 nm with beam quality factor of M-2 approximate to 1.1 for an incident pump power of 13.8 W, corresponding to optical-to-optical conversion efficiency of 40%. Up to 1-mJ energy per pulse at pulse repetition frequency (PRF) of 5 kHz, and the maximum average power of 5.3-W with FWHM pulse duration of 30.5 ns at 20 kHz were achieved in Q-switched mode. (C) 2008 Optical Society of America.
Resumo:
Ta2O5 films are prepared on Si, BK7, fused silica, antireflection (AR) and high reflector (HR) substrates by electron beam evaporation method, respectively. Both the optical property and laser induced damage thresholds (LIDTs) at 1064 nm of Ta2O5 films on different substrates are investigated before and after annealing at 673 K for 12h. It is shown that annealing increases the refractive index and decreases the extinction index, and improves the O/Ta ratio of the Ta2O5 films from 2.42 to 2.50. Moreover, the results show that the LIDTs of the Ta2O5 films are mainly correlated with three parameters: substrate property, substoichiometry defect in the films and impurity defect at the interface between the substrate and the films. Details of the laser induced damage models in different cases are discussed.
Resumo:
We demonstrate the influence of the relative humidity (RH) on the wavelength of fiber Bragg grating sensors (FBGS), performing tests with five FBGS at different humidity and temperature conditions. These tests were performed in a climate chamber whose RH changes according to a scheduled profile from 30% to 90%, in steps of 10%. These profiles were repeated for a wide range of temperatures from 10 degrees C to 70 degrees C, in steps of 10 degrees C. Two different types of instrumentation methods have been tested, spot welding and epoxy bonding, in two different materials, steel and carbon fiber reinforced polymer (CFRP). We discuss the results for each type of sensor and instrumentation method by analyzing the linearity of the Bragg wavelength with RH and temperature.
Resumo:
Diode-pumped, solid-state (DPSS) lasers with multiwavelength capability have become an industrial reality in recent years. Multiwavelength capability allows DPSS lasers to perform operations such as micromachining in a variety of engineering materials such as ceramics, metals and polymers. A series of experiments was performed to investigate how shielding gas environments and gas pressure affect the ability to cut and machine chromium-rich die steels. Results from this study reveal that traditional plasma-controlling gases have a detrimental e�ffect on the surface morphology of micromachined components.