944 resultados para Dimensión fractal
Resumo:
The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.
Resumo:
19 p.
Resumo:
128 p. Retirada a solicitud de la autora 03/03/2016
Resumo:
ENGLISH: The rate at which increments are deposited on the sagittal otoliths of yellowfin (Thunnus albacares) and skipjack (Katsuwonus p elamis) tunas is determined by a markrecapture experiment using tetracycline. During growth in fork length from 40 to 110 em, and for a period of up to 389 days, yellowfin of the Revillagigedo Islands- Baja California region deposit one increment per day in either the postrostrum or rostrum position of the otolith. For skipjack of the same region, rostrum increments underestimate time by approximately 24 percent during growth from 42 to 64 cm and over the maximum interval of 249 days. The growth rate of each species is estimated from the recapture fork length and the linear change in an otolith dimension following tetracycline injection. Over specific ranges in fork length the rates are 3.06 and 1.15 em per month for yellowfin and skipjack, respectively. SPANISH: La rapidez (tasa) en la que se depositan los incrementos en los otolitos sagitales del aleta amarilla (Thunnus albacares) y el barrilete (Katsuwonus pelamis) se determina mediante un experimento al recapturar los peces que han sido marcados con tetraciclina. Durante el crecimiento de la longitud de horquilla de 40 a 110 cm y por un período hasta de 389 días, se forma en el aleta amarilla de la región de las Islas Revillagigedo-Baja California, un incremento diario ya sea en el parte del postrostrum o rostrum de los otolitos. Con respecto al barrilete de la misma region los incrementos en el rostrum subestiman aproximadamente el tiempo en un 24 por ciento durante el crecimiento de 42 a 64 cm y sobre un intervalo máximo de 249 días. El índice de crecimiento de cada especie se estima en la recaptura según la longitud de horquilla y el cambio lineal en la dimensión de un otolito después de la inyección de tetraciclina. La variación específica sobre la longitud de horquilla de los índices son 3.06 y 1.15 cm por mes para el aleta amarilla y el barrilete, respectivamente. (PDF contains 54 pages.)
Resumo:
184 p.
Resumo:
The learning of probability distributions from data is a ubiquitous problem in the fields of Statistics and Artificial Intelligence. During the last decades several learning algorithms have been proposed to learn probability distributions based on decomposable models due to their advantageous theoretical properties. Some of these algorithms can be used to search for a maximum likelihood decomposable model with a given maximum clique size, k, which controls the complexity of the model. Unfortunately, the problem of learning a maximum likelihood decomposable model given a maximum clique size is NP-hard for k > 2. In this work, we propose a family of algorithms which approximates this problem with a computational complexity of O(k · n^2 log n) in the worst case, where n is the number of implied random variables. The structures of the decomposable models that solve the maximum likelihood problem are called maximal k-order decomposable graphs. Our proposals, called fractal trees, construct a sequence of maximal i-order decomposable graphs, for i = 2, ..., k, in k − 1 steps. At each step, the algorithms follow a divide-and-conquer strategy based on the particular features of this type of structures. Additionally, we propose a prune-and-graft procedure which transforms a maximal k-order decomposable graph into another one, increasing its likelihood. We have implemented two particular fractal tree algorithms called parallel fractal tree and sequential fractal tree. These algorithms can be considered a natural extension of Chow and Liu’s algorithm, from k = 2 to arbitrary values of k. Both algorithms have been compared against other efficient approaches in artificial and real domains, and they have shown a competitive behavior to deal with the maximum likelihood problem. Due to their low computational complexity they are especially recommended to deal with high dimensional domains.
Resumo:
2170 p.
Resumo:
203 p.
Resumo:
[ES] La parte práctica de esta tesis se centra en un proyecto ERASMUS realizado en el Monasterio de San Prudencio de Monte Laturce (Clavijo, La Rioja). Dicho proyecto aparece descrito en varios registros de este mismo repositorio a los que se puede acceder a través del siguiente:
Resumo:
提出采用分形理论对泡沫金属的细现结构及尺寸效应进行研究的方法.针对一系列具有不同相对密度和细观结构的泡沫铝,证明了其细观结构在一定尺度内符合分形特征,比较了小岛分维、计盒分维和信息分维等算法对泡沫金属分形表征的适用性,分析了细观结构特征对分维的影响.结合推广的sierpinski垫片模型研究了泡沫铝的屈服强度与分维的联系,建立了泡沫铝屈服强度的尺寸效应模型.研究结果表明,由于引入了表征细现结构特征的分形维数,该模型除能表征屈服强度随试样尺寸的变化规律外,还在一定程度上直接反映了泡沫金属细观结构特征对力学性能的影响.
Resumo:
在包含时间进程的光波大气传输及其自适应光学相位校正的数值模拟研究中,如长曝光成像和自适应光学系统的动态控制过程,矩形湍流相屏的产生和应用尤为重要.而现在通常使用的功率谱反演法产生的是正方形的湍流相屏,只采用其中的矩形部分显然造成计算机资源的浪费;并且谱反演法产生的湍流相屏需要进行低频补偿,从而明显地增加计算量.基于大气湍流所造成的畸变相位波前的分形特征,提出了一种产生矩形湍流相屏的新方法,并与解析理论结果进行对比,验证了这种矩形相屏产生方法的正确性.与已有的方法相比,此算法具有两个明显的优点:算法简单、计算效率高,节省计算机资源;与大气湍流介质统计特性无论在高频部分还是在低频部分均符合得较好.
Resumo:
This work is concerned with the derivation of optimal scaling laws, in the sense of matching lower and upper bounds on the energy, for a solid undergoing ductile fracture. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. The solid is assumed to obey deformation-theory of plasticity and, in order to further simplify the analysis, we assume isotropic rigid-plastic deformations with zero plastic spin. When hardening exponents are given values consistent with observation, the energy is found to exhibit sublinear growth. We regularize the energy through the addition of nonlocal energy terms of the strain-gradient plasticity type. This nonlocal regularization has the effect of introducing an intrinsic length scale into the energy. We also put forth a physical argument that identifies the intrinsic length and suggests a linear growth of the nonlocal energy. Under these assumptions, ductile fracture emerges as the net result of two competing effects: whereas the sublinear growth of the local energy promotes localization of deformation to failure planes, the nonlocal regularization stabilizes this process, thus resulting in an orderly progression towards failure and a well-defined specific fracture energy. The optimal scaling laws derived here show that ductile fracture results from localization of deformations to void sheets, and that it requires a well-defined energy per unit fracture area. In particular, fractal modes of fracture are ruled out under the assumptions of the analysis. The optimal scaling laws additionally show that ductile fracture is cohesive in nature, i.e., it obeys a well-defined relation between tractions and opening displacements. Finally, the scaling laws supply a link between micromechanical properties and macroscopic fracture properties. In particular, they reveal the relative roles that surface energy and microplasticity play as contributors to the specific fracture energy of the material. Next, we present an experimental assessment of the optimal scaling laws. We show that when the specific fracture energy is renormalized in a manner suggested by the optimal scaling laws, the data falls within the bounds predicted by the analysis and, moreover, they ostensibly collapse---with allowances made for experimental scatter---on a master curve dependent on the hardening exponent, but otherwise material independent.
Resumo:
LABURPENA: Lan enpiriko honen helburua Lea-Artibaiko hiru ikastetxetako ikasleen jarrerak aztertzea izan da, jatorria eta ama-hizkuntza bezalako faktoreek ezberdintasunik eragiten duten ikusteko. Horretarako, Likert eskalako galdetegien bidez informazioa bildu, ikasleen motibazioak -integratzailea eta instrumentala-, bigarren hizkuntza ikasteari eskaintzen dioten garrantzia eta haien gurasoen laguntza neurtu eta ondoren talde ezberdinen arteko konparaketa gauzatu da. Parte-hartzaile guztiek emaitza onak erakutsi badituzte ere, ama-hizkuntza euskara dutenek eta jatorriz euskal herritarrak direnek eskuratu dituzte emaitzarik baxuenak jarrerak deskribatzeko erabili diren aspektu horietan. Hala, ondorioztatu da testuinguru honetan etxeko hizkuntzak eta jatorriak badakartela desberdintasunik bigarren hizkuntzaren ikaskuntzarekiko jarreran.
Resumo:
La función última de las entidades sociales que atienden a emigrantes es el de promover su integración social y calidad de vida. Potenciar la dimensión cualitativa de la misma implica conocer el nivel de bienestar psicológico subjetivo de las personas usuarias de las mismas. El objetivo principal es el de identificar y evaluar las dimensiones del bienestar subjetivo de las personas inmigrantes adultas usuarias de tres asociaciones ubicadas en Vizcaya. El diseño metodológico empleado es de tipo cualitativo, basado en entrevistas semiestructuradas aplicadas a una muestra intencional compuesta por siete personas inmigrantes adultas residentes en Vizcaya. El análisis de los testimonios desvela diferencias en los niveles de bienestar subjetivo relacionados con su nivel de participación e implicación en la asociación de pertenencia. La principal conclusión extraída del estudio es que la asociación influye de forma positiva en el bienestar de los inmigrantes, mostrando mayor nivel de satisfacción aquellos que además participan como voluntarios.
Resumo:
This work seeks to understand past and present surface conditions on the Moon using two different but complementary approaches: topographic analysis using high-resolution elevation data from recent spacecraft missions and forward modeling of the dominant agent of lunar surface modification, impact cratering. The first investigation focuses on global surface roughness of the Moon, using a variety of statistical parameters to explore slopes at different scales and their relation to competing geological processes. We find that highlands topography behaves as a nearly self-similar fractal system on scales of order 100 meters, and there is a distinct change in this behavior above and below approximately 1 km. Chapter 2 focuses this analysis on two localized regions: the lunar south pole, including Shackleton crater, and the large mare-filled basins on the nearside of the Moon. In particular, we find that differential slope, a statistical measure of roughness related to the curvature of a topographic profile, is extremely useful in distinguishing between geologic units. Chapter 3 introduces a numerical model that simulates a cratered terrain by emplacing features of characteristic shape geometrically, allowing for tracking of both the topography and surviving rim fragments over time. The power spectral density of cratered terrains is estimated numerically from model results and benchmarked against a 1-dimensional analytic model. The power spectral slope is observed to vary predictably with the size-frequency distribution of craters, as well as the crater shape. The final chapter employs the rim-tracking feature of the cratered terrain model to analyze the evolving size-frequency distribution of craters under different criteria for identifying "visible" craters from surviving rim fragments. A geometric bias exists that systematically over counts large or small craters, depending on the rim fraction required to count a given feature as either visible or erased.