797 resultados para Data Mining
Resumo:
Comunicación presentada en CoSECiVi 2014, I Congreso de la Sociedad Española para las Ciencias del Videojuego, Barcelona, 24 de junio de 2014.
Resumo:
La incorporación del EEES provocó una infinidad de desafíos y retos a las Universidades que a día de hoy aún están siendo solucionados. Además, ha conllevado nuevas oportunidades para la formación de estudiantes pero también para las Universidades. Entre ellas, la formación interuniversitaria entre estados miembro de la UE. El EEES permite unificar a través del sistema ECTS la carga de trabajo de los estudiantes facilitando la propuesta de planes de estudios interuniversitarios. Sin embargo, surgen desafíos a la hora de llevarlos a la práctica. Independientemente de los retos en la propuesta de los planes de estudio, es necesario implementar procesos de enseñanza-aprendizaje que salven la distancia en el espacio físico entre el alumnado y el profesorado. En este artículo se presenta la experiencia docente de la asignatura e-home del Máster Machine Learning and Data Mining de la Universidad de Alicante y la Universidad Jean Monnet (Francia). En este caso, se combina la formación en aula presencial con formación en aula virtual a través de videoconferencia. La evaluación del método de enseñanza-aprendizaje propuesto utiliza la propia experiencia docente y encuestas realizadas a los alumnos para poner de manifiesto la ruptura de barreras espaciales y un éxito a nivel docente.
Resumo:
Introducción al análisis con Clustering
Resumo:
Análisis multivariante con MDS
Resumo:
Análisis multivariante de Componentes Principales (PCA)
Resumo:
Análisis multivariante con técnicas de Permutaciones y MANOVA (Permanova)
Resumo:
Tema 6. Text Mining con Topic Modeling.
Resumo:
Este trabajo analiza las nuevas tendencias en la creación y gestión de información geográfica, para la elaboración de modelos inductivos basados exclusivamente en bases de datos geográficas. Estos modelos permiten integrar grandes volúmenes de datos de características heterogéneas, lo que supone una gran complejidad técnica y metodológica. Se propone una metodología que permite conocer detalladamente la distribución de los recursos hídricos naturales en un territorio y derivar numerosas capas de información que puedan ser incorporadas a estos modelos «ávidos de datos» (data-hungry). La zona de estudio escogida para aplicar esta metodología es la comarca de la Marina Baja (Alicante), para la que se presenta un cálculo del balance hídrico espacial mediante el uso de herramientas estadísticas, geoestadísticas y Sistemas de Información Geográfica. Finalmente, todas las capas de información generadas (84) han sido validadas y se ha comprobado que su creación admite un cierto grado de automatización que permitirá incorporarlas en análisis de Minería de Datos más amplios.
Resumo:
Tese de mestrado, Bioinformática e Biologia Computacional (Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
As plataformas de e-Learning são cada vez mais utilizadas na educação à distância, facto que se encontra diretamente relacionado com a possibilidade de proporcionarem aos seus alunos a valência de poderem assistir a cursos em qualquer lugar. Dentro do âmbito das plataformas de e-Learning encontra-se um grupo especialmente interessante: as plataformas adaptativas, que tendem a substituir o professor (presencial) através de interatividade, variabilidade de conteúdos, automatização e capacidade para resolução de problemas e simulação de comportamentos educacionais. O projeto ADAPT (plataforma adaptativa de e-Learning) consiste na criação de uma destas plataformas, implementando tutoria inteligente, resolução de problemas com base em experiências passadas, algoritmos genéticos e link-mining. É na área de link-mining que surge o desenvolvimento desta dissertação que documenta o desenvolvimento de quatro módulos distintos: O primeiro módulo consiste num motor de busca para sugestão de conteúdos alternativos; o segundo módulo consiste na identificação de mudanças de estilo de aprendizagem; o terceiro módulo consiste numa plataforma de análise de dados que implementa várias técnicas de data mining e estatística para fornecer aos professores/tutores informações importantes que não seriam visíveis sem recurso a este tipo de técnicas; por fim, o último módulo consiste num sistema de recomendações que sugere aos alunos os artigos mais adequados com base nas consultas de alunos com perfis semelhantes. Esta tese documenta o desenvolvimento dos vários protótipos para cada um destes módulos. Os testes efetuados para cada módulo mostram que as metodologias utilizadas são válidas e viáveis.
Resumo:
Mode of access: Internet.
Resumo:
As with all new ideas, the concept of Open Innovation requires extensive empirical investigation, testing and development. This paper analyzes Procter and Gamble's 'Connect and Develop' strategy as a case study of the major organizational and technological changes associated with open innovation. It argues that although some of the organizational changes accompanying open innovation are beginning to be described in the literature, more analysis is warranted into the ways technological changes have facilitated open innovation strategies, particularly related to new product development. Information and communications technologies enable the exchange of distributed sources of information in the open innovation process. The case study shows that furthermore a suite of new technologies for data mining, simulation, prototyping and visual representation, what we call 'innovation technology', help to support open innovation in Procter and Gamble. The paper concludes with a suggested research agenda for furthering understanding of the role played by and consequences of this technology.
Resumo:
Sharing data among organizations often leads to mutual benefit. Recent technology in data mining has enabled efficient extraction of knowledge from large databases. This, however, increases risks of disclosing the sensitive knowledge when the database is released to other parties. To address this privacy issue, one may sanitize the original database so that the sensitive knowledge is hidden. The challenge is to minimize the side effect on the quality of the sanitized database so that nonsensitive knowledge can still be mined. In this paper, we study such a problem in the context of hiding sensitive frequent itemsets by judiciously modifying the transactions in the database. To preserve the non-sensitive frequent itemsets, we propose a border-based approach to efficiently evaluate the impact of any modification to the database during the hiding process. The quality of database can be well maintained by greedily selecting the modifications with minimal side effect. Experiments results are also reported to show the effectiveness of the proposed approach. © 2005 IEEE