902 resultados para DUAL OXIDASE
Resumo:
The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound protein complex that couples electron transfer to O2 to proton translocation across the membrane. To elucidate the mechanism of the redox-driven proton pumping, we investigated the kinetics of electron and proton transfer in a structural variant of the ba3 oxidase where a putative "pump site" was modified by replacement of Asp372 by Ile. In this structural variant, proton pumping was uncoupled from internal electron transfer and O2 reduction. The results from our studies show that proton uptake to the pump site (time constant ∼65 μs in the wild-type cytochrome c oxidase) was impaired in the Asp372Ile variant. Furthermore, a reaction step that in the wild-type cytochrome c oxidase is linked to simultaneous proton uptake and release with a time constant of ∼1.2 ms was slowed to ∼8.4 ms, and in Asp372Ile was only associated with proton uptake to the catalytic site. These data identify reaction steps that are associated with protonation and deprotonation of the pump site, and point to the area around Asp372 as the location of this site in the ba3 cytochrome c oxidase.
Resumo:
The bioelectrocatalytic (oxygen reduction reaction, ORR) properties of the multicopper oxidase CueO immobilized on gold electrodes were investigated. Macroscopic electrochemical techniques were combined with in situ scanning tunneling microscopy (STM) and surface-enhanced Raman spectroscopy at the ensemble and at the single-molecule level. Self-assembled monolayer of mercaptopropionic acid, cysteamine, and p-aminothiophenol were chosen as redox mediators. The highest ORR activity was observed for the protein attached to amino-terminated adlayers. In situ STM experiments revealed that the presence of oxygen causes distinct structure and electronic changes in the metallic centers of the enzyme, which determine the rate of intramolecular electron transfer and, consequently, affect the rate of electron tunneling through the protein. Complementary Raman spectroscopy experiments provided access for monitoring structural changes in the redox state of the type 1 copper center of the immobilized enzyme during the CueO-catalyzed oxygen reduction cycle. These results unequivocally demonstrate the existence of a direct electronic communication between the electrode substrate and the type 1 copper center.
Resumo:
Results on the effectiveness of psychosocial treatments for patients with comorbid psychiatric and substance use disorders (dual disorders) will be discussed based on relevant meta-analyses and comprehensive reviews. Findings pertaining to severe (e.g., schizophrenia) and mild to moderate (e.g., anxiety disorders) dual disorders will be presented. The heterogeneity in patient characteristics, treatments, settings, and measured outcomes within the studies hinders the extraction of simple conclusions regarding how to effectively integrate psychiatric and addiction-oriented services into one psychosocial treatment. However, promising treatment strategies and interventions include integrative programs that comprise motivational interviewing; disorder-specific cognitive-behavioral interventions; substance use reduction interventions such as relapse prevention or contingency management; and/or family interventions. Such programs are generally superior to control groups (e.g., waiting list, treatment as usual) and are sometimes superior to other active treatments (e.g., skills training) in outcomes of substance use, psychiatric disorders, and social functioning.
Resumo:
OBJECTIVE The purpose of this study was to investigate the feasibility of microdose CT using a comparable dose as for conventional chest radiographs in two planes including dual-energy subtraction for lung nodule assessment. MATERIALS AND METHODS We investigated 65 chest phantoms with 141 lung nodules, using an anthropomorphic chest phantom with artificial lung nodules. Microdose CT parameters were 80 kV and 6 mAs, with pitch of 2.2. Iterative reconstruction algorithms and an integrated circuit detector system (Stellar, Siemens Healthcare) were applied for maximum dose reduction. Maximum intensity projections (MIPs) were reconstructed. Chest radiographs were acquired in two projections with bone suppression. Four blinded radiologists interpreted the images in random order. RESULTS A soft-tissue CT kernel (I30f) delivered better sensitivities in a pilot study than a hard kernel (I70f), with respective mean (SD) sensitivities of 91.1% ± 2.2% versus 85.6% ± 5.6% (p = 0.041). Nodule size was measured accurately for all kernels. Mean clustered nodule sensitivity with chest radiography was 45.7% ± 8.1% (with bone suppression, 46.1% ± 8%; p = 0.94); for microdose CT, nodule sensitivity was 83.6% ± 9% without MIP (with additional MIP, 92.5% ± 6%; p < 10(-3)). Individual sensitivities of microdose CT for readers 1, 2, 3, and 4 were 84.3%, 90.7%, 68.6%, and 45.0%, respectively. Sensitivities with chest radiography for readers 1, 2, 3, and 4 were 42.9%, 58.6%, 36.4%, and 90.7%, respectively. In the per-phantom analysis, respective sensitivities of microdose CT versus chest radiography were 96.2% and 75% (p < 10(-6)). The effective dose for chest radiography including dual-energy subtraction was 0.242 mSv; for microdose CT, the applied dose was 0.1323 mSv. CONCLUSION Microdose CT is better than the combination of chest radiography and dual-energy subtraction for the detection of solid nodules between 5 and 12 mm at a lower dose level of 0.13 mSv. Soft-tissue kernels allow better sensitivities. These preliminary results indicate that microdose CT has the potential to replace conventional chest radiography for lung nodule detection.
Resumo:
We present a novel approach to the reconstruction of depth from light field data. Our method uses dictionary representations and group sparsity constraints to derive a convex formulation. Although our solution results in an increase of the problem dimensionality, we keep numerical complexity at bay by restricting the space of solutions and by exploiting an efficient Primal-Dual formulation. Comparisons with state of the art techniques, on both synthetic and real data, show promising performances.
Resumo:
The goal of the present article is to introduce dual-process theories – in particular the default-interventionist model – as an overarching framework for attention-related research in sports. Dual-process theories propose that two different types of processing guide human behavior. Type 1 processing is independent of available working memory capacity (WMC), whereas Type 2 processing depends on available working memory capacity. We review the latest theoretical developments on dual-process theories and present evidence for the validity of dual-process theories from various domains. We demonstrate how existing sport psychology findings can be integrated within the dual-process framework. We illustrate how future sport psychology research might benefit from adopting the dual-process framework as a meta-theoretical framework by arguing that the complex interplay between Type 1 and Type 2 processing has to be taken into account in order to gain a more complete understanding of the dynamic nature of attentional processing during sport performance at varying levels of expertise. Finally, we demonstrate that sport psychology applications might benefit from the dual-process perspective as well: dual-process theories are able to predict which behaviors can be more successfully executed when relying on Type 1 processing and which behaviors benefit from Type 2 processing.
Resumo:
Dual-phase time projection chambers (TPCs) filled with the liquid noble gas xenon (LXe) are currently the most sensitive detectors searching for interactions of WIMP dark matter in a laboratory-based experiment. This is achieved by combining a large, monolithic dark matter target of a very low background with the capability to localize the interaction vertex in three dimensions, allowing for target fiducialization and multiple-scatter rejection. The background in dual-phase LXe TPCs is further reduced by the simultaneous measurement of the scintillation and ionization signal from a particle interaction, which is used to distinguish signal from background signatures. This article reviews the principle of dual-phase LXe TPCs, and provides an overview about running as well as future experimental efforts.
Resumo:
Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialised topics. At IFPA meeting 2013 there were twelve themed workshops, three of which are summarized in this report. These workshops related to various aspects of placental biology but collectively covered areas of placental function, cell turnover and immunology: 1) immunology; 2) novel determinants of placental cell fate; 3) dual perfusion of human placental tissue.
Resumo:
BACKGROUND The immune contexture predicts prognosis in human colorectal cancer (CRC). Whereas tumour-infiltrating CD8+ T cells and myeloid CD16+ myeloperoxidase (MPO)+ cells are associated with favourable clinical outcome, interleukin (IL)-17-producing cells have been reported to correlate with severe prognosis. However, their phenotypes and functions continue to be debated. OBJECTIVE To investigate clinical relevance, phenotypes and functional features of CRC-infiltrating, IL-17-producing cells. METHODS IL-17 staining was performed by immunohistochemistry on a tissue microarray including 1148 CRCs. Phenotypes of IL-17-producing cells were evaluated by flow cytometry on cell suspensions obtained by enzymatic digestion of clinical specimens. Functions of CRC-isolated, IL-17-producing cells were assessed by in vitro and in vivo experiments. RESULTS IL-17+ infiltrates were not themselves predictive of an unfavourable clinical outcome, but correlated with infiltration by CD8+ T cells and CD16+ MPO+ neutrophils. Ex vivo analysis showed that tumour-infiltrating IL-17+ cells mostly consist of CD4+ T helper 17 (Th17) cells with multifaceted properties. Indeed, owing to IL-17 secretion, CRC-derived Th17 triggered the release of protumorigenic factors by tumour and tumour-associated stroma. However, on the other hand, they favoured recruitment of beneficial neutrophils through IL-8 secretion and, most importantly, they drove highly cytotoxic CCR5+CCR6+CD8+ T cells into tumour tissue, through CCL5 and CCL20 release. Consistent with these findings, the presence of intraepithelial, but not of stromal Th17 cells, positively correlated with improved survival. CONCLUSIONS Our study shows the dual role played by tumour-infiltrating Th17 in CRC, thus advising caution when developing new IL-17/Th17 targeted treatments.
Resumo:
Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells.
Resumo:
AIMS The GLOBAL LEADERS trial is a superiority study in patients undergoing percutaneous coronary intervention, with a uniform use of Biolimus A9-eluting stents (BES) and bivalirudin. GLOBAL LEADERS was designed to assess whether a 24-month antithrombotic regimen with ticagrelor and one month of acetylsalicylic acid (ASA), compared to conventional dual antiplatelet therapy (DAPT), improves outcomes. METHODS AND RESULTS Patients (n >16,000) are randomised (1:1 ratio) to ticagrelor 90 mg twice daily for 24 months plus ASA ≤100 mg for one month versus DAPT with either ticagrelor (acute coronary syndrome) or clopidogrel (stable coronary artery disease) for 12 months plus ASA ≤100 mg for 24 months. The primary outcome is a composite of all-cause mortality or non-fatal, new Q-wave myocardial infarction at 24 months. The key safety endpoint is investigator-reported class 3 or 5 bleeding according to the Bleeding Academic Research Consortium (BARC) definitions. Sensitivity analysis will be carried out to explore potential differences in outcome across geographic regions and according to specific angiographic and clinical risk estimates. CONCLUSIONS The GLOBAL LEADERS trial aims to assess the role of ticagrelor as a single antiplatelet agent after a short course of DAPT for the long-term prevention of cardiac adverse events, across a wide spectrum of patients, following BES implantation.
Resumo:
AIMS In the dual antiplatelet therapy (DAPT) study, continued thienopyridine beyond 12 months after drug-eluting stent placement was associated with increased mortality compared with placebo. We sought to evaluate factors related to mortality in randomized patients receiving either drug-eluting or bare metal stents in the DAPT study. METHODS AND RESULTS Patients were enrolled after coronary stenting, given thienopyridine and aspirin for 12 months, randomly assigned to continued thienopyridine or placebo for an additional 18 months (while taking aspirin), and subsequently treated with aspirin alone for another 3 months. A blinded independent adjudication committee evaluated deaths. Among 11 648 randomized patients, rates of all-cause mortality rates were 1.9 vs. 1.5% (continued thienopyridine vs. placebo, P = 0.07), cardiovascular mortality, 1.0 vs. 1.0% (P = 0.97), and non-cardiovascular mortality, 0.9 vs. 0.5% (P = 0.01) over the randomized period (Months 12-30). Rates of fatal bleeding were 0.2 vs. 0.1% (P = 0.81), and deaths related to any prior bleeding were 0.3 vs. 0.2% (P = 0.36), Months 12-33). Cancer incidence did not differ (2.0 vs. 1.6%, P = 0.12). Cancer-related deaths occurred in 0.6 vs. 0.3% (P = 0.02) and were rarely related to bleeding (0.1 vs. 0, P = 0.25). After excluding those occurring in patients with cancer diagnosed before enrolment, rates were 0.4 vs. 0.3% (P = 0.16). CONCLUSION Bleeding accounted for a minority of deaths among patients treated with continued thienopyridine. Cancer-related death in association with thienopyridine therapy was mainly not related to bleeding and may be a chance finding. Caution is warranted when considering extended thienopyridine in patients with advanced cancer. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00977938.
Resumo:
AIMS Our aim was to report on a survey initiated by the European Association of Percutaneous Cardiovascular Interventions (EAPCI) concerning opinion on the evidence relating to dual antiplatelet therapy (DAPT) duration after coronary stenting. METHODS AND RESULTS Results from three randomised clinical trials were scheduled to be presented at the American Heart Association Scientific Sessions 2014 (AHA 2014). A web-based survey was distributed to all individuals registered in the EuroIntervention mailing list (n=15,200) both before and after AHA 2014. A total of 1,134 physicians responded to the first (i.e., before AHA 2014) and 542 to the second (i.e., after AHA 2014) survey. The majority of respondents interpreted trial results consistent with a substantial equipoise regarding the benefits and risks of an extended versus a standard DAPT strategy. Two respondents out of ten believed extended DAPT should be implemented in selected patients. After AHA 2014, 46.1% of participants expressed uncertainty about the available evidence on DAPT duration, and 40.0% the need for clinical guidance. CONCLUSIONS This EAPCI survey highlights considerable uncertainty within the medical community with regard to the optimal duration of DAPT after coronary stenting in the light of recent reported trial results. Updated recommendations for practising physicians to guide treatment decisions in routine clinical practice should be provided by international societies.