950 resultados para DICHLOROFLUORESCEIN ASSAY
Resumo:
Background Prevention and control of ovine enzootic abortion (OEA) can be achieved by application of a live vaccine. In this study, five sheep flocks with different vaccination and infection status were serologically tested using a competitive enzyme-linked immunosorbent assay (cELISA) specific for Chlamydophila (Cp.) abortus over a two-year time period. Results Sheep in Flock A with recent OEA history had high antibody values after vaccination similar to Flock C with natural Cp. abortus infections. In contrast, OEA serology negative sheep (Flock E) showed individual animal-specific immunoreactions after vaccination. Antibody levels of vaccinated ewes in Flock B ranged from negative to positive two and three years after vaccination, respectively. Positive antibody values in the negative control Flock D (without OEA or vaccination) are probably due to asymptomatic intestinal infections with Cp. abortus. Excretion of the attenuated strain of Cp. abortus used in the live vaccine through the eye was not observed in vaccinated animals of Flock E. Conclusion The findings of our study indicate that, using serology, no distinction can be made between vaccinated and naturally infected sheep. As a result, confirmation of a negative OEA status in vaccinated animals by serology cannot be determined.
Resumo:
BACKGROUND The transgenic adenocarcinoma of the mouse prostate (TRAMP) model closely mimics PC-progression as it occurs in humans. However, the timing of disease incidence and progression (especially late stage) makes it logistically difficult to conduct experiments synchronously and economically. The development and characterization of androgen depletion independent (ADI) TRAMP sublines are reported. METHODS Sublines were derived from androgen-sensitive TRAMP-C1 and TRAMP-C2 cell lines by androgen deprivation in vitro and in vivo. Epithelial origin (cytokeratin) and expression of late stage biomarkers (E-cadherin and KAI-1) were evaluated using immunohistochemistry. Androgen receptor (AR) status was assessed through quantitative real time PCR, Western blotting, and immunohistochemistry. Coexpression of AR and E-cadherin was also evaluated. Clonogenicity and invasive potential were measured by soft agar and matrigel invasion assays. Proliferation/survival of sublines in response to androgen was assessed by WST-1 assay. In vivo growth of subcutaneous tumors was assessed in castrated and sham-castrated C57BL/6 mice. RESULTS The sublines were epithelial and displayed ADI in vitro and in vivo. Compared to the parental lines, these showed (1) significantly faster growth rates in vitro and in vivo independent of androgen depletion, (2) greater tumorigenic, and invasive potential in vitro. All showed substantial downregulation in expression levels of tumor suppressor, E-cadherin, and metastatis suppressor, KAI-1. Interestingly, the percentage of cells expressing AR with downregulated E-cadherin was higher in ADI cells, suggesting a possible interaction between the two pathways. CONCLUSIONS The TRAMP model now encompasses ADI sublines potentially representing different phenotypes with increased tumorigenicity and invasiveness.
Resumo:
The relationship between neuronal acuity and behavioral performance was assessed in the barn owl (Tyto alba), a nocturnal raptor renowned for its ability to localize sounds and for the topographic representation of auditory space found in the midbrain. We measured discrimination of sound-source separation using a newly developed procedure involving the habituation and recovery of the pupillary dilation response. The smallest discriminable change of source location was found to be about two times finer in azimuth than in elevation. Recordings from neurons in its midbrain space map revealed that their spatial tuning, like the spatial discrimination behavior, was also better in azimuth than in elevation by a factor of about two. Because the PDR behavioral assay is mediated by the same circuitry whether discrimination is assessed in azimuth or in elevation, this difference in vertical and horizontal acuity is likely to reflect a true difference in sensory resolution, without additional confounding effects of differences in motor performance in the two dimensions. Our results, therefore, are consistent with the hypothesis that the acuity of the midbrain space map determines auditory spatial discrimination.
Resumo:
Calcium Phosphate ceramics have been widely used in tissue engineering due to their excellent biocompatibility and biodegradability. In the physiological environment, they are able to gradually degrade, absorbed and promote bone growth. Ultimately, they are capable of replacing damaged bone with new tissue. However, their low mechanical properties limit calcium phosphate ceramics in load-bearing applications. To obtain sufficient mechanical properties as well as high biocompatibility is one of the main focuses in biomaterials research. Therefore, the current project focuses on the preparation and characterization of porous tri-calcium phosphate (TCP) ceramic scaffolds. Hydroxapatite (HA) was used as the raw material, and normal calcium phosphate bioglass was added to adjust the ratio between calcium and phosphate. It was found that when 20% bioglass was added to HA and sintered at 1400oC for 3 hours, the TCP scaffold was obtained and this was confirmed by X-ray diffraction (XRD) analysis. Test results have shown that by applying this method, TCP scaffolds have significantly higher compressive strength (9.98MPa) than those made via TCP powder (<3MPa). Moreover, in order to further increase the compressive strength of TCP scaffolds, the samples were then coated with bioglass. For normal bioglass coated TCP scaffold, compressive strength was 16.69±0.5MPa; the compressive strength for single layer mesoporous bioglass coated scaffolds was 15.03±0.63MPa. In addition, this project has also concentrated on sizes and shapes effects; it was found that the cylinder scaffolds have more mechanical property than the club ones. In addition, this project performed cell culture within scaffold to assess biocompatibility. The cells were well distributed in the scaffold, and the cytotoxicity test was performed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay. The Alkaline Phosphatase (Alp) activity of human bone marrow mesenchymal stem cell system (hBMSCs) seeded on scaffold expressed higher in vitro than that in the positive control groups in osteogenic medium, which indicated that the scaffolds were both osteoconductive and osteoinductive, showing potential value in bone tissue engineering.
Resumo:
Influenza is a widespread disease occurring in seasonal epidemics, and each year is responsible for up to 500,000 deaths worldwide. Influenza can develop into strains which cause severe symptoms and high mortality rates, and could potentially reach pandemic status if the virus’ properties allow easy transmission. Influenza is transmissible via contact with the virus, either directly (infected people) or indirectly (contaminated objects); via reception of large droplets over short distances (one metre or less); or through inhalation of aerosols containing the virus expelled by infected individuals during respiratory activities, that can remain suspended in the air and travel distances of more than one metre (the aerosol route). Aerosol transmission of viruses involves three stages: production of the droplets containing viruses; transport of the droplets and ability of a virus to remain intact and infectious; and reception of the droplets (via inhalation). Our understanding of the transmission of influenza viruses via the aerosol route is poor, and thus our ability to prevent a widespread outbreak is limited. This study explored the fate of viruses in droplets by investigating the effects of some physical factors on the recovery of both a bacteriophage model and influenza virus. Experiments simulating respiratory droplets were carried out using different types of droplets, generated from a commonly used water-like matrix, and also from an ‘artificial mucous’ matrix which was used to more closely resemble respiratory fluids. To detect viruses in droplets, we used the traditional plaque assay techniques, and also a sensitive, quantitative PCR assay specifically developed for this study. Our results showed that the artificial mucous suspension enhanced the recovery of infectious bacteriophage. We were able to report detection limits of infectious bacteriophage (no bacteriophage was detected by the plaque assay when aerosolised from a suspension of 103 PFU/mL, for three of the four droplet types tested), and that bacteriophage could remain infectious in suspended droplets for up to 20 minutes. We also showed that the nested real-time PCR assay was able to detect the presence of bacteriophage RNA where the plaque assay could not detect any intact particles. Finally, when applying knowledge from the bacteriophage experiments, we reported the quantitative recoveries of influenza viruses in droplets, which were more consistent and stable than we had anticipated. Influenza viruses can be detected up to 20 minutes (after aerosolisation) in suspended aerosols and possibly beyond. It also was detectable from nebulising suspensions with relatively low concentrations of viruses.
Resumo:
Calcium (Ca) is the main element of most pulp capping materials and plays an essential role in mineralization. Different pulp capping materials can release various concentrations of Ca ions leading to different clinical outcomes. The purpose of this study was to investigate the effects of various concentrations of Ca ions on the growth and osteogenic differentiation of human dental pulp cells (hDPCs). Different concentrations of Ca ions were added to growth culture medium and osteogenic inductive culture medium. A Cell Counting Kit-8 (CCK-8) was used to determine the proliferation of hDPCs in growth culture medium. Osteogenic differentiation and mineralization were measured by alkaline phosphatase (ALP) assay, Alizarin red S/von kossa staining, calcium content quantitative assay. The selected osteogenic differentiation markers were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Within the range of 1.8–16.2 mM, increased concentrations of Ca ions had no effect on cell proliferation, but led to changes in osteogenic differentiation. It was noted that enhanced mineralized matrix nodule formation was found in higher Ca ions concentrations; however, ALP activity and gene expression were reduced. qRT-PCR results showed a trend towards down-regulated mRNA expression of type I collagen (COL1A2) and Runx2 at elevated concentrations of Ca ions, whereas osteopontin (OPN) and osteocalcin (OCN) mRNA expression was significantly up-regulated. Ca ions content in the culture media can significantly influence the osteogenic properties of hDPCs, indicating the importance of optimizing Ca ions release from dental pulp capping materials in order to achieve desirable clinical outcomes.
Resumo:
Background: Cabergoline is an ergotamine derivative that increases the expression of glial cell line-derived neurotrophic factor (GDNF) in vitro. We recently showed that GDNF in the ventral tegmental area (VTA) reduces the motivation to consume alcohol. We therefore set out to determine whether cabergoline administration decreases alcohol-drinking and -seeking behaviors via GDNF. Methods: Reverse transcription polymerase chain reaction (RT-PCR) and Enzyme-Linked ImmunoSorbent Assay (ELISA) were used to measure GDNF levels. Western blot analysis was used for phosphorylation experiments. Operant self-administration in rats and a two-bottle choice procedure in mice were used to assess alcohol-drinking behaviors. Instrumental performance tested during extinction was used to measure alcohol-seeking behavior. The [35S]GTPγS binding assay was used to assess the expression and function of the dopamine D2 receptor (D2R). Results: We found that treatment of the dopaminergic-like cell line SH-SY5Y with cabergoline and systemic administration of cabergoline in rats resulted in an increase in GDNF level and in the activation of the GDNF pathway. Cabergoline treatment decreased alcohol-drinking and -seeking behaviors including relapse, and its action to reduce alcohol consumption was localized to the VTA. Finally, the increase in GDNF expression and the decrease in alcohol consumption by cabergoline were abolished in GDNF heterozygous knockout mice. Conclusions: Together, these findings suggest that cabergoline-mediated upregulation of the GDNF pathway attenuates alcohol-drinking behaviors and relapse. Alcohol abuse and addiction are devastating and costly problems worldwide. This study puts forward the possibility that cabergoline might be an effective treatment for these disorders. © 2009 Society of Biological Psychiatry.
Resumo:
The Bcl-2-associated athanogene (BAG) family is an evolutionarily conserved, multifunctional group of cochaperones that perform diverse cellular functions ranging from proliferation to growth arrest and cell death in yeast, in mammals, and, as recently observed, in plants. The Arabidopsis genome contains seven homologs of the BAG family, including four with domain organization similar to animal BAGs. In the present study we show that an Arabidopsis BAG, AtBAG7, is a uniquely localized endoplasmic reticulum (ER) BAG that is necessary for the proper maintenance of the unfolded protein response (UPR). AtBAG7was shown to interact directly in vivo with themolecular chaperone, AtBiP2, by bimolecular fluorescence complementation assays, and the interaction was confirmed by yeast two-hybrid assay. Treatment with an inducer of UPR, tunicamycin, resulted in accelerated cell death of AtBAG7-null mutants. Furthermore, AtBAG7 knockouts were sensitive to known ER stress stimuli, heat and cold. In these knockouts heat sensitivity was reverted successfully to the wild-type phenotype with the addition of the chemical chaperone, tauroursodexycholic acid (TUDCA). Real-time PCR of ER stress proteins indicated that the expression of the heat-shock protein, AtBiP3, is selectively up-regulated in AtBAG7-null mutants upon heat and cold stress. Our results reveal an unexpected diversity of the plant's BAG gene family and suggest that AtBAG7 is an essential component of the UPR during heat and cold tolerance, thus confirming the cytoprotective role of plant BAGs.
Resumo:
Sericin and fibroin are the two major proteins in the silk fibre produced by the domesticated silkworm, Bombyx mori. Fibroin has been extensively investigated as a biomaterial. We have previously shown that fibroin can function successfully as a substratum for growing cells of the eye. Sericin has been so far neglected as a biomaterial because of suspected allergenic activity. However, this misconception has now been dispelled, and sericin’s biocompatibility is currently indisputable. Aiming at promoting sericin as a possible substratum for the growth of corneal cells in order to make tissue-engineered constructs for the restoration of the ocular surface, in this study we investigated the attachment and growth in vitro of human corneal limbal epithelial cells (HLECs) on sericin-based membranes. Sericin was isolated and regenerated from the silkworm cocoons by an aqueous procedure, manufactured into membranes, and characterized (mechanical properties, structural analysis, contact angles). Primary cell cultures from two donors were established in serum-supplemented media in the presence of murine feeder cells. Membranes made of sericin and fibroin-sericin blends were assessed in vitro as substrata for HLECs in a serum-free medium, in a cell attachment assay and in a 3-day cell growth experiment. While the mechanical characteristics of sericin were found to be inferior to those of fibroin, its ability to enhance the attachment of HLECs was significantly superior to fibroin, as revealed by the PicoGreen® assay. Evidence was also obtained that cells can grow and differentiate on these substrata.
Resumo:
The formation of hypertrophic scars is a frequent outcome of wound repair and often requires further therapy with treatments such as silicone gel sheets (SGS; Perkins et al., 1983). Although widely used, knowledge regarding SGS and their mechanism of action on hypertrophic scars is limited. Furthermore, SGS require consistent application for at least twelve hours a day for up to twelve consecutive months, beginning as soon as wound reepithelialisation has occurred. Preliminary research at QUT has shown that some species of silicone present in SGS have the ability to permeate into collagen gel skin mimetics upon exposure. An analogue of these species, GP226, was found to decrease both collagen synthesis and the total amount of collagen present following exposure to cultures of cells derived from hypertrophic scars. This silicone of interest was a crude mixture of silicone species, which resolved into five fractions of different molecular weight. These five fractions were found to have differing effects on collagen synthesis and cell viability following exposure to fibroblasts derived from hypertrophic scars (HSF), keloid scars (KF) and normal skin (nHSF and nKF). The research performed herein continues to further assess the potential of GP226 and its fractions for scar remediation by determining in more detail its effects on HSF, KF, nHSF, nKF and human keratinocytes (HK) in terms of cell viability and proliferation at various time points. Through these studies it was revealed that Fraction IV was the most active fraction as it induced a reduction in cell viability and proliferation most similar to that observed with GP226. Cells undergoing apoptosis were also detected in HSF cultures exposed to GP226 and Fraction IV using the Tunel assay (Roche). These investigations were difficult to pursue further as the fractionation process used for GP226 was labour-intensive and time inefficient. Therefore a number of silicones with similar structure to Fraction IV were synthesised and screened for their effect following application to HSF and nHSF. PDMS7-g-PEG7, a silicone-PEG copolymer of low molecular weight and low hydrophilic-lipophilic balance factor, was found to be the most effective at reducing cell proliferation and inducing apoptosis in cultures of HSF, nHSF and HK. Further studies investigated gene expression through microarray and superarray techniques and demonstrated that many genes are differentially expressed in HSF following treatment with GP226, Fraction IV and PDMS7-g-PEG7. In brief, it was demonstrated that genes for TGFβ1 and TNF are not differentially regulated while genes for AIFM2, IL8, NSMAF, SMAD7, TRAF3 and IGF2R show increased expression (>1.8 fold change) following treatment with PDMS7-g-PEG7. In addition, genes for αSMA, TRAF2, COL1A1 and COL3A1 have decreased expression (>-1.8 fold change) following treatment with GP226, Fraction IV and PDMS7-g-PEG7. The data obtained suggest that many different pathways related to apoptosis and collagen synthesis are affected in HSF following exposure to PDMS7-g-PEG7. The significance is that silicone-PEG copolymers, such as GP226, Fraction IV and PDMS7-g-PEG7, could potentially be a non-invasive substitute to apoptosis-inducing chemical agents that are currently used as scar treatments. It is anticipated that these findings will ultimately contribute to the development of a novel scar therapy with faster action and improved outcomes for patients suffering from hypertrophic scars.
Resumo:
Chronic venous leg ulcers are a detrimental health issue plaguing our society, resulting in long term pain, immobility and decreased quality of life for a large proportion of sufferers. The frequency of these chronic wounds has led current research to focus on the wound environment to provide important information regarding the prolonged, fluctuated or static healing patterns of these wounds. Disruption to the normal wound healing process results in release of multiple factors in the wound environment that could correlate to wound chronicity. These biochemical factors can often be detected through non-invasively sampling chronic wound fluid (CWF) from the site of injury. Of note, whilst there are numerous studies comparing acute and chronic wound fluids, there have not been any reports in the literature employing a longitudinal study in order to track biochemical changes in wound fluid as patients transition from a non-healing to healed state. Initially the objective of this study was to identify biochemical changes in CWF associated with wound healing using a proteomic approach. The proteomic approach incorporated a multi-dimensional liquid chromatography fractionation technique coupled with mass spectrometry (MS) to enable identification of proteins present in lower concentrations in CWF. Not surprisingly, many of the proteins identified in wound fluid were acute phase proteins normally expressed during the inflammatory phase of healing. However, the number of proteins positively identified by MS was quite low. This was attributed to the diverse range in concentration of protein species in CWF making it challenging to detect the diagnostically relevant low molecular weight proteins. In view of this, SELDI-TOF MS was also explored as a means to target low molecular weight proteins in sequential patient CWF samples during the course of healing. Unfortunately, the results generated did not yield any peaks of interest that were altered as wounds transitioned to a healed state. During the course of proteomic assessment of CWF, it became evident that a fraction of non-proteinaceous compounds strongly absorbed at 280 nm. Subsequent analyses confirmed that most of these compounds were in fact part of the purine catabolic pathway, possessing distinctive aromatic rings and which results in high absorbance at 254 nm. The accumulation of these purinogenic compounds in CWF suggests that the wound bed is poorly oxygenated resulting in a switch to anaerobic metabolism and consequently ATP breakdown. In addition, the presence of the terminal purine catabolite, uric acid (UA), indicates that the enzyme xanthine oxidoreductase (XOR) catalyses the reaction of hypoxanthine to xanthine and finally to UA. More importantly, the studies provide evidence for the first time of the exogenous presence of XOR in CWF. XOR is the only enzyme in humans capable of catalysing the production of UA in conjunction with a burst of the highly reactive superoxide radical and other oxidants like H2O2. Excessive release of these free radicals in the wound environment can cause cellular damage disrupting the normal wound healing process. In view of this, a sensitive and specific assay was established for monitoring low concentrations of these catabolites in CWF. This procedure involved combining high performance liquid chromatography (HPLC) with tandem mass spectrometry and multiple reaction monitoring (MRM). This application was selective, using specific MRM transitions and HPLC separations for each analyte, making it ideal for the detection and quantitation of purine catabolites in CWF. The results demonstrated that elevated levels of UA were detected in wound fluid obtained from patients with clinically worse ulcers. This suggests that XOR is active in the wound site generating significant amounts of reactive oxygen species (ROS). In addition, analysis of the amount of purine precursors in wound fluid revealed elevated levels of purine precursors in wound fluid from patients with less severe ulcers. Taken together, the results generated in this thesis suggest that monitoring changes of purine catabolites in CWF is likely to provide valuable information regarding the healing patterns of chronic venous leg ulcers. XOR catalysis of purine precursors not only provides a method for monitoring the onset, prognosis and progress of chronic venous leg ulcers, but also provides a potential therapeutic target by inhibiting XOR, thus blocking UA and ROS production. Targeting a combination of these purinogenic compounds and XOR could lead to the development of novel point of care diagnostic tests. Therefore, further investigation of these processes during wound healing will be worthwhile and may assist in elucidating the pathogenesis of this disease state, which in turn may lead to the development of new diagnostics and therapies that target these processes.
Resumo:
A novel method for genotyping the clustered, regularly interspaced short-palindromic-repeat (CRISPR) locus of Campylobacter jejuni is described. Following real-time PCR, CRISPR products were subjected to high-resolution melt (HRM) analysis, a new technology that allows precise melt profile determination of amplicons. This investigation shows that the CRISPR HRM assay provides a powerful addition to existing C. jejuni genotyping methods and emphasizes the potential of HRM for genotyping short sequence repeats in other species
Resumo:
Subchondral bone sclerosis is a well-recognised manifestation of osteoarthritis (OA). The osteocyte cell network is now considered to be central to the regulation of bone homeo-stasis; however, it is not known whether the integrity of the osteocyte cell network is altered in OA patients. The aim of this study was to investigate OA osteocyte phenotypic changes and its potential role in OA subchondral bone pathogenesis. The morphological and phenotypic changes of osteocytes in OA samples were investigated by micro-CT, SEM, histology, im-munohistochemistry, TRAP staining, apoptosis assay and real-time PCR studies. We demonstrated that in OA subchondral bone, the osteocyte morphology was altered showing rough and rounded cell body with fewer and disorganized dendrites compared with the os-teocytes in control samples. OA osteocyte also showed dysregulated expression of osteocyte markers, apoptosis, and degradative enzymes, indicating that the phenotypical changes in OA osteocytes were accompanied with OA subchondral bone remodelling (increased osteoblast and osteoclast activity) and increased bone volume with altered mineral content. Significant alteration of osteocytes identified in OA samples indicates a potential regulatory role of osteocytes in subchondral bone remodelling and mineral metabolism during OA pathogene-sis.
Resumo:
Objective To examine the risk factors for Mycobacterium tuberculosis infection (MTI) among Greenlandic children for the purpose of identifying those at highest risk of infection. Methods Between 2005 and 2007, 1797 Greenlandic schoolchildren in five different areas were tested for MTI with an interferon gamma release assay (IGRA) and a tuberculin skin test (TST). Parents or guardians were surveyed using a standardized self-administered questionnaire to obtain data on crowding in the household, parents’ educational level and the child’s health status. Demographic data for each child – i.e. parents’ place of birth, number of siblings, distance between siblings (next younger and next older), birth order and mother’s age when the child was born – were also extracted from a public registry. Logistic regression was used to check for associations between these variables and MTI, and all results were expressed as odds ratios (ORs) and 95% confidence intervals (CIs). Children were considered to have MTI if they tested positive on both the IGRA assay and the TST. Findings The overall prevalence of MTI was 8.5% (152/1797). MTI was diagnosed in 26.7% of the children with a known TB contact, as opposed to 6.4% of the children without such contact. Overall, the MTI rate was higher among Inuit children (OR: 4.22; 95% CI: 1.55–11.5) and among children born less than one year after the birth of the next older sibling (OR: 2.48; 95% CI: 1.33–4.63). Self-reported TB contact modified the profile to include household crowding and low mother’s education. Children who had an older MTI-positive sibling were much more likely to test positive for MTI themselves (OR: 14.2; 95% CI: 5.75–35.0) than children without an infected older sibling. Conclusion Ethnicity, sibling relations, number of household residents and maternal level of education are factors associated with the risk of TB infection among children in Greenland. The strong household clustering of MTI suggests that family sources of exposure are important.