878 resultados para CpGV resistance baculovirus whole genome sequencing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zooplankton play an important role in our oceans, in biogeochemical cycling and providing a food source for commercially important fish larvae. However, difficulties in correctly identifying zooplankton hinder our understanding of their roles in marine ecosystem functioning, and can prevent detection of long term changes in their community structure. The advent of massively parallel next generation sequencing technology allows DNA sequence data to be recovered directly from whole community samples. Here we assess the ability of such sequencing to quantify richness and diversity of a mixed zooplankton assemblage from a productive time series site in the Western English Channel. Methodology/Principle Findings Plankton net hauls (200 µm) were taken at the Western Channel Observatory station L4 in September 2010 and January 2011. These samples were analysed by microscopy and metagenetic analysis of the 18S nuclear small subunit ribosomal RNA gene using the 454 pyrosequencing platform. Following quality control a total of 419,041 sequences were obtained for all samples. The sequences clustered into 205 operational taxonomic units using a 97% similarity cut-off. Allocation of taxonomy by comparison with the National Centre for Biotechnology Information database identified 135 OTUs to species level, 11 to genus level and 1 to order, <2.5% of sequences were classified as unknowns. By comparison a skilled microscopic analyst was able to routinely enumerate only 58 taxonomic groups. Conclusions Metagenetics reveals a previously hidden taxonomic richness, especially for Copepoda and hard-to-identify meroplankton such as Bivalvia, Gastropoda and Polychaeta. It also reveals rare species and parasites. We conclude that Next Generation Sequencing of 18S amplicons is a powerful tool for elucidating the true diversity and species richness of zooplankton communities. While this approach allows for broad diversity assessments of plankton it may become increasingly attractive in future if sequence reference libraries of accurately identified individuals are better populated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Components of partial disease resistance (PDR) to fusarium head blight (FHB), detected in a seed-germination assay, were compared with whole-plant FHB resistance of 30 USA soft red winter wheat entries in the 2002 Uniform Southern FHB Nursery. Highly significant (P <0·001) differences between cultivars in the in vitro seed-germination assay inoculated with Microdochium majus were correlated to FHB disease incidence (r = -0·41; P <0·05), severity (r = -0·47; P <0·01), FHB index (r = -0·46; P <0·01), damaged kernels (r = -0·52; P <0·01), grain deoxynivalenol (DON) concentration (r = -0·40; P <0·05) and incidence/severity/kernel-damage index (ISK) (r = -0·45; P <0·01) caused by Fusarium graminearum. Multiple linear regression analysis explained a greater percentage of variation in FHB resistance using the seed-germination assay and the previously reported detached-leaf assay PDR components as explanatory factors. Shorter incubation periods, longer latent periods, shorter lesion lengths in the detached-leaf assay and higher germination rates in the seed-germination assay were related to greater FHB resistance across all disease variables, collectively explaining 62% of variation for incidence, 49% for severity, 56% for F. graminearum-damaged kernels (FDK), 39% for DON and 59% for ISK index. Incubation period was most strongly related to disease incidence and the early stages of infection, while resistance detected in the seed germination assay and latent period were more strongly related to FHB disease severity. Resistance detected using the seed-germination assay was notable as it related to greater decline in the level of FDK and a smaller reduction in DON than would have been expected from the reduction in FHB disease assessed by visual symptoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ziebuhr W, Dietrich K, Trautmann M, Wilhelm M. Institut für Molekulare Infektionsbiologie, Würzburg, Germany. w.ziebuhr@mail.uni-wuerzburg.de During two clinical courses of shunt-associated meningitis in a 3-month-old child, five multiresistant S. epidermidis isolates were obtained and analyzed with regard to biofilm production and antibiotic susceptibility. Three S. epidermidis strains, which were initially isolated from the cerebrospinal fluid, produced biofilms on polystyrene tissue culture plates. Following antibiotic treatment and subsequent exchange of the shunt system, sterilization of the CSF was achieved. However, after three weeks a relapse of the infection occurred. The two S. epidermidis isolates obtained now were biofilm negative, but showed an identical resistance pattern as those from the previous infection, except that resistance to rifampicin and increased mininal inhibitory concentrations of aminoglycoside antibiotics had emerged. DNA fingerprinting by PFGE indicated the clonal origin of all isolates. However, some DNA rearrangements and differences in the IS256-specific hybridization patterns could be identified in the isolates from the second infection period that led to altered biofilm formation and increased expression of aminoglycoside resistance traits. The data evidence that variation of biofilm expression occurs in vivo during an infection and highlight the extraordinary genome flexibility of pathogenic S. epidermidis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have utilised polymorphic chloroplast microsatellites to analyse cytoplasmic relationships between accessions in the genera Triticum and Aegilops. Sequencing of PCR products revealed point mutations and insertions/deletions in addition to the standard repeat length expansion/contraction which most likely represent ancient synapomorphies. Phylogenetic analyses revealed three distinct groups of accessions. One of these contained all the non-Aegilops speltoides S-type cytoplasm species, another comprised almost exclusively A, C, D, M, N, T and U cytoplasm-type accessions and the third contained the polyploid Triticum species and all the Ae. speltoides accessions, further confirming that Ae. speltoides or a closely related but now extinct species was the original B-genome donor of cultivated polyploid wheat. Successive decreases in levels of genetic diversity due to domestication were also observed. Finally, we highlight the importance of elucidating longer-term evolutionary processes operating at microsatellite repeat loci.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: The aim of the investigation was to use in vitro transposon mutagenesis to generate metronidazole resistance in the obligately anaerobic pathogenic bacterium Bacteroides thetaiotaomicron, and to identify the genes involved to enable investigation of potential mechanisms for the generation of metronidazole resistance.
Methods: The genes affected by the transposon insertion were identified by plasmid rescue and sequencing. Expression levels of the relevant genes were determined by semi-quantitative RNA hybridization and catabolic activity by lactate dehydrogenase/pyruvate oxidoreductase assays.
Results: A metronidazole-resistant mutant was isolated and the transposon insertion site was identified in an intergenic region between the rhaO and rhaR genes of the gene cluster involved in the uptake and catabolism of rhamnose. Metronidazole resistance was observed during growth in defined medium containing either rhamnose or glucose. The metronidazole-resistant mutant showed improved growth in the presence of rhamnose as compared with the wild-type parent. There was increased transcription of all genes of the rhamnose gene cluster in the presence of rhamnose and glucose, likely due to the transposon providing an additional promoter for the rhaR gene, encoding the positive transcriptional regulator of the rhamnose operon. The B. thetaiotaomicron metronidazole resistance phenotype was recreated by overexpressing the rhaR gene in the B. thetaiotaomicron wild-type parent. Both the metronidazole-resistant transposon mutant and RhaR overexpression strains displayed a phenotype of higher lactate dehydrogenase and lower pyruvate oxidoreductase activity in comparison with the parent strain during growth in rhamnose.
Conclusions: These data indicate that overexpression of the rhaR gene generates metronidazole resistance in B. thetaiotaomicron

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We conducted a genome-wide association study testing single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) for association with early-onset myocardial infarction in 2,967 cases and 3,075 controls. We carried out replication in an independent sample with an effective sample size of up to 19,492. SNPs at nine loci reached genome-wide significance: three are newly identified (21q22 near MRPS6-SLC5A3-KCNE2, 6p24 in PHACTR1 and 2q33 in WDR12) and six replicated prior observations1-4 (9p21, 1p13 near CELSR2-PSRC1-SORT1, 10q11 near CXCL12, 1q41 in MIA3, 19p13 near LDLR and 1p32 near PCSK9). We tested 554 common copy number polymorphisms (>1% allele frequency) and none met the pre-specified threshold for replication (P < 10-3). We identified 8,065 rare CNVs but did not detect a greater CNV burden in cases compared to controls, in genes compared to the genome as a whole, or at any individual locus. SNPs at nine loci were reproducibly associated with myocardial infarction, but tests of common and rare CNVs failed to identify additional associations with myocardial infarction risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The retinal vascular endothelium is essential for angiogenesis and is involved in maintaining barrier selectivity and vascular tone. The aim of this study was to identify and quantify microRNAs and other small regulatory non-coding RNAs (ncRNAs) which may regulate these crucial functions. Primary bovine retinal microvascular endothelial cells (RMECs) provide a well-characterized in vitro system for studying angiogenesis. RNA extracted from RMECs was used to prepare a small RNA library for deep sequencing (Illumina Genome Analyzer). A total of 6.8 million reads were mapped to 250 known microRNAs in miRBase (release 16). In many cases, the most frequent isomiR differed from the sequence reported in miRBase. In addition, five novel microRNAs, 13 novel bovine orthologs of known human microRNAs and multiple new members of the miR-2284/2285 family were detected. Several similar to 30 nucleotide sno-miRNAs were identified, with the most highly expressed being derived from snoRNA U78. Highly expressed microRNAs previously associated with endothelial cells included miR-126 and miR-378, but the most highly expressed was miR-21, comprising more than one-third of all mapped reads. Inhibition of miR-21 with an LNA inhibitor significantly reduced proliferation, migration, and tube-forming capacity of RMECs. The independence from prior sequence knowledge provided by deep sequencing facilitates analysis of novel microRNAs and other small RNAs. This approach also enables quantitative evaluation of microRNA expression, which has highlighted the predominance of a small number of microRNAs in RMECs. Knockdown of miR-21 suggests a role for this microRNA in regulation of angiogenesis in the retinal microvasculature. J. Cell. Biochem. 113: 20982111, 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The p63 transcription factor (TP63) is critical in development, growth and differentiation of stratifying epithelia. This is highlighted by the severity of congenital abnormalities caused by TP63 mutations in humans, the dramatic phenotypes in knockout mice and de-regulation of TP63 expression in neoplasia altering the tumour suppressive roles of the TP53 family. In order to define the normal role played by TP63 and provide the basis for better understanding how this network is perturbed in disease, we used chromatin immunoprecipitation combined with massively parallel sequencing (ChIP-seq) to identify >7500 high-confidence TP63-binding regions across the entire genome, in primary human neonatal foreskin keratinocytes (HFKs). Using integrative strategies, we demonstrate that only a subset of these sites are bound by TP53 in response to DNA damage. We identify a role for TP63 in transcriptional regulation of multiple genes genetically linked to cleft palate and identify AP-2alpha (TFAP2A) as a co-regulator of a subset of these genes. We further demonstrate that AP-2gamma (TFAP2C) can bind a subset of these regions and that acute depletion of either TFAP2A or TFAP2C alone is sufficient to reduce terminal differentiation of organotypic epidermal skin equivalents, indicating overlapping physiological functions with TP63.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Burkholderia cenocepacia is an environmental bacterium causing serious human opportunistic infections and is extremely resistant to multiple antibiotics including antimicrobial peptides, such as polymyxin B (PmB). Extreme antibiotic resistance is attributed to outer membrane impermeability ('intrinsic' resistance). Previous work showed that production of full-length lipopolysaccharide (LPS) prevents surface binding of PmB. We hypothesized that two tiers of resistance mechanisms rendering different thresholds of PmB resistance exist in B. cenocepacia. To test this notion, candidate genes were mutated in two isogenic strains expressing full-length LPS or truncated LPS devoid of heptose ('heptoseless LPS') respectively. We uncovered various proteins required for PmB resistance only in the strain with heptoseless LPS. These proteins are not involved in preventing PmB binding to whole cells or permeabilization of the outer membrane. Our results support a two-tier model of PmB resistance in B. cenocepacia. One tier sets a very high threshold mediated by the LPS and the outer membrane permeability barrier. The second tier sets a lower threshold that may play a role in PmB resistance only when outer membrane permeability is compromised. This model may be of general applicability to understanding the high antimicrobial peptide resistance of environmental opportunistic pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND) efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Burkholderia cenocepacia is highly resistant to antimicrobial peptides and we hypothesized that the conversion of UDP-glucose to UDP-glucuronic acid, a reaction catalysed by the enzyme UDP-glucose dehydrogenase (Ugd) would be important for this resistance. The genome of B. cenocepacia contains three predicted ugd genes: ugd(BCAL2946), ugd(BCAM0855) and ugd(BCAM2034), all of which were individually inactivated. Only inactivation of ugd(BCAL2946) resulted in increased sensitivity to polymyxin B and this sensitivity could be overcome when either ugd(BCAL2946) or ugd(BCAM0855) but not ugd(BCAM2034) was expressed from plasmids. The growth of a conditional ugd(BCAL2946) mutant, created in the Deltaugd(BCAM0855) background, was significantly impaired under non-permissive conditions. Growth could be rescued by either ugd(BCAL2946) or ugd(BCAM0855) expressed in trans, but not by ugd(BCAM2034). Biochemical analysis of the purified, recombinant forms of Ugd(BCAL2946) and Ugd(BCAM0855) revealed that they are soluble homodimers with similar in vitro Ugd activity and comparable kinetic constants for their substrates UDP-glucose and NAD(+). Purified Ugd(BCAM2034) showed no in vitro Ugd activity. Real-time PCR analysis showed that the expression of ugd(BCAL2946) was 5.4- and 135-fold greater than that of ugd(BCAM0855) and ugd(BCAM2034), respectively. Together, these data indicate that the combined activity of Ugd(BCAL2946) and Ugd(BCAM0855) is essential for the survival of B. cenocepacia but only the most highly expressed ugd gene, ugd(BCAL2946), is required for polymyxin B resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcriptional regulators, such as SoxS, RamA, MarA, and Rob, which upregulate the AcrAB efflux pump, have been shown to be associated with multidrug resistance in clinically relevant Gram-negative bacteria. In addition to the multidrug resistance phenotype, these regulators have also been shown to play a role in the cellular metabolism and possibly the virulence potential of microbial cells. As such, the increased expression of these proteins is likely to cause pleiotropic phenotypes. Klebsiella pneumoniae is a major nosocomial pathogen which can express the SoxS, MarA, Rob, and RamA proteins, and the accompanying paper shows that the increased transcription of ramA is associated with tigecycline resistance (M. Veleba and T. Schneiders, Antimicrob. Agents Chemother. 56:4466-4467, 2012). Bioinformatic analyses of the available Klebsiella genome sequences show that an additional AraC-type regulator is encoded chromosomally. In this work, we characterize this novel AraC-type regulator, hereby called RarA (Regulator of antibiotic resistance A), which is encoded in K. pneumoniae, Enterobacter sp. 638, Serratia proteamaculans 568, and Enterobacter cloacae. We show that the overexpression of rarA results in a multidrug resistance phenotype which requires a functional AcrAB efflux pump but is independent of the other AraC regulators. Quantitative real-time PCR experiments show that rarA (MGH 78578 KPN_02968) and its neighboring efflux pump operon oqxAB (KPN_02969_02970) are consistently upregulated in clinical isolates collected from various geographical locations (Chile, Turkey, and Germany). Our results suggest that rarA overexpression upregulates the oqxAB efflux pump. Additionally, it appears that oqxR, encoding a GntR-type regulator adjacent to the oqxAB operon, is able to downregulate the expression of the oqxAB efflux pump, where OqxR complementation resulted in reductions to olaquindox MICs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both advocacy for and critiques of the Human Genome Project assume a self-sustaining relationship between genetics and. medicalization. However, this assumption ignores the ways in which the meanings of genetic research are conditional on its position in sequences of events. Based, on analyses of three conditions for which at least one putative gene or genetic marker has been identified, this article argues that critical junctures in the institutional stabilization of phenotypes and the mechanisms that sustain such classifications over time configure the practices and meanings of genetic research. Path dependence is critical to understanding the lack of consistent fit between genetics and medlcalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nalidixic acid-resistant Salmonella enterica serovars Kentucky (n5) and Virchow (n6) cultured from individuals were investigated for the presence of plasmid-mediated quinolone resistance (PMQR) determinants.

PMQR markers and mutations within the quinolone resistance-determining regions of the target genes were investigated by PCR followed by DNA sequencing. Conjugation, plasmid profiling and targeted PCR were performed to demonstrate the transferability of the qnrS1 gene. Subsequently, a plasmid was identified that carried a quinolone resistance marker and this was completely sequenced.

A Salmonella Virchow isolate carried a qnrS1 gene associated with an IncN incompatibility group conjugative plasmid of 40995 bp, which was designated pVQS1. The latter conferred resistance to ampicillin and nalidixic acid and showed sequence similarity in its core region to plasmid R46, whilst the resistance-encoding region was similar to pAH0376 from Shigella flexneri and pINF5 from Salmonella Infantis and contained an IS26 remnant, a complete Tn3 structure, a truncated IS2 element and a qnrS1 marker, followed by IS26. In contrast to pINF5, IS26 was identified immediately downstream of the qnrS1 gene.

This is the first known report of a qnrS1 gene in Salmonella spp. in Switzerland. Analysis of the complete nucleotide sequence of the qnrS1-containing plasmid showed a novel arrangement of this antibiotic resistance-encoding region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.