960 resultados para Copepod parasites


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biological role of Langerin(+) dendritic cells (DCs) such as Langerhans cells and a subset of dermal DCs (dDCs) in adaptive immunity against cutaneous pathogens remains enigmatic. Thus, we analyzed the impact of Langerin(+) DCs in adaptive T cell-mediated immunity toward Leishmania major parasites in a Lang-DTR mouse model that allows conditional diphtheria toxin (DT)-induced ablation of The biological role of Langerin+ dendritic cells (DCs) such as Langerhans cells and a subset of dermal DCs (dDCs) in adaptive immunity against cutaneous pathogens remains enigmatic. Thus, we analyzed the impact of Langerin+ DCs in adaptive T cell-mediated immunity toward Leishmania major parasites in a Lang-DTR mouse model that allows conditional diphtheria toxin (DT)-induced ablation of Langerin+ DCs in vivo. For the first time, infection experiments with DT-treated Lang-DTR mice revealed that proliferation of L. major-specific CD8+ T cells is significantly reduced during the early phase of the immune response following depletion of Langerin+ DCs. Consequently, the total number of activated CD8+ T cells within the draining lymph node and at the site of infection is diminished. Furthermore, we show that the impaired CD8+ T cell response is due to the absence of Langerin+ dDCs and not Langerhans cells. Nevertheless, the CD4+ T cell response is not altered and the infection is cleared as effectively in DT-treated Lang-DTR mice as in control mice. This clearly demonstrates that Langerin+ DCs are, in general, dispensable for an efficient adaptive immune response against L. major parasites. Thus, we propose a novel concept that, in the experimental model of leishmaniasis, priming of CD4+ T cells is mediated by Langerin− dDCs, whereas Langerin+ dDCs are involved in early priming of CD8+ T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two distinct families of neuropeptides are known to endow platyhelminth nervous systems-the FMRFamide-like peptides (FLPs) and the neuropepticle Fs (NPFs). Flatworm FLPs are strusturally simple, each 4-6 amino acids in length with a carboxy terminal aromatic-hydropliobic-Arg-Phe-amide motif. Thus far, four distinct flatworm FLPs have been characterized, with only one of these from a parasite. They have a widespread distribution within the central and peripheral nervous system of every flatworm examined, including neurones serving the attachment organs, the somatic Musculature and the reproductive system. The only physiological role that has been identified for flatworm FLPs is myoexcitation. Flatworm NPFs are believed to be invertebrate homologues of the vertebrate neuropeptide Y (NPY) family of peptides. Flatworm NPFs are 36-39 amino acids in length and are characterized by a caboxy terminal GRPRFarnide signature and conserved tyrosine residues at positions 10 and 17 from the carboxy terminal. Like FLPs, NPF occurs throughout flatworm nervous systems, although less is known about its biological role. While there is some evidence for a myoexcitatory action in cestodes and flukes, more compelling physiological data indicate that flatworm NPF inhibits cAMP levels in a manner that is characteristic of NPY action in vertebrates. The widespread expression of these neuropeptides in flanworm parasites highlights the potential of these signalling systems to yield new targets for novel anthelmintics. Although platyhelminth FLP and NPF receptors await identification, other molecules that play pivotal roles in neuropeptide signalling have been uncovered. These enzymes, involved in the biosynthesis and processing of flatworm neuropeptides, have recently been described and offer other distinct and attractive targets for therapeutic interference.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Parasitic diseases including malaria, leishmaniasis and schistosomiasis take a terrible toll of human life, health and productivity, especially in tropical and subtropical regions, and are also highly significant in animal health worldwide. Antiparasitic drugs are the mainstays of control of most of these diseases, but in many cases current therapies are inadequate and in some the situation is deteriorating because of drug resistance. Microtubules, as essential components of almost all eukaryotic cells, are proven drug targets in many helminth diseases and show promise as targets for the development of new antiprotozoal drugs. Objective: This article reviews the chemistry of the microtubule inhibitors in current use and under investigation as antiparasitic agents, their activities against the major parasites and their mechanisms of action. New directions in both inhibitor chemistry and biological evaluation are discussed. Conclusions: The most promising immediate avenues for discovery and design appear to lie in development of novel benzimidazoles for helminth parasites and compounds based on antimitotic herbicides for protozoal parasites. New understanding from functional genomics, structural biology and microtubular imaging will help accelerate the development of completely novel antiparasitic drugs targeting microtubules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invasive species can have profound impacts on communities and it is increasingly recognized that such effects may be mediated by parasitism. The 'enemy release' hypothesis posits that invaders may be successful and have high impacts owing to escape from parasitism. Alternatively, we hypothesize that parasites may increase host feeding rates and hence parasitized invaders may have increased community impacts. Here, we investigate the influence of parasitism on the predatory impact of the invasive freshwater amphipod Gammarus pulex. Up to 70 per cent of individuals are infected with the acanthoce- phalan parasite Echinorhynchus truttae, but parasitized individuals were no different in body condition to those unparasitized. Parasitized individuals consumed significantly more prey (Asellus aquaticus; Isopoda) than did unparasitized individuals. Both parasitized and unparasitized individuals displayed Type-II functional responses (FRs), with the FR for parasitized individuals rising more steeply, with a higher asymptote, compared with unparasi- tized individuals. While the parasite reduced the fitness of individual females, we predict a minor effect on population recruitment because of low parasite prevalence in the peak reproductive period. The parasite thus has a large per capita effect on predatory rate but a low population fitness effect, and thus may enhance rather than reduce the impact of this invader.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light and electron microscopy were used to characterize the structure of secretory cells and their products involved in attachment of two monogenean parasites of fish, in order to understand their role in the attachment process. In Bravohollisia rosetta and Bravohollisia gussevi, peduncular gland cells with two nuclei, granular endoplasmic reticulum, and Golgi bodies produce dual electron-dense (DED) secretory bodies with a homogenous electron-dense rind and a less electron-dense fibrillar core (oval and concave in B. rosetta and oval in B. gussevi). The DED secretory bodies are altered as they migrate from the gland cell to the haptoral reservoir, the superficial anchor grooves, and into the gill tissues. The contents of the DED secretory bodies are exocytosed into the reservoirs, fibrillar cores persisting in the matrix, some of which condense, forming highly electron-dense spherical bodies. Small, oval, electron-dense bodies occur in the grooves, while no inclusions are visible in the homogenous exudate within the gill tissues. The single tubular extension of the reservoir enters a bifurcate channel within the anchor via a concealed, crevice-like opening on one side of the anchor. The channel directs secretions into the left and the right grooves via concealed apertures. The secretions, introduced into the tissues by the anchors, probably assist in attachment. The secretions are manifested externally as net-like structures and observed in some cases to be still attached to the point of exudation, on anchors detached from the gill tissues. This suggests that despite having the anchors detached, the worms can still remain anchored to the gill tissues via these net-like structures. Based on this, it is postulated that the net-like secretions probably function as a safety line to anchor the worm during the onset of locomotion and in doing so reduce the risk of tearing host tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key component of parental care involves defending resources destined for offspring from a diverse array of potential interspecific competitors, such as social parasites, fungi and bacteria. 2. Just as with other aspects of parental care, such as offspring provisioning or brood defence, sexual conflict between parents may arise over how to share the costs of this form of care. There has been little previous work, however, to investigate how this particular burden might be shared. 3. Here, we describe a hitherto uncharacterized form of parental care in burying beetles Nicrophorus vespilloides, a species which prepares carrion for its young and faces competition from microbes for this resource. We found that parents defend the carcass with antibacterial anal exudates, and that the antibacterial activity of these exudates is only upregulated following the discovery of a corpse. At the same time, phenoloxidase activity in the anal exudates is downregulated, indicating parallels with the internal insect immune system. 4. In unmanipulated breeding pairs, females had higher antibacterial activity in their anal exudates than males, suggesting sex-specific roles in this aspect of parental care. 5. When we experimentally widowed males, we found that they increased levels of antibacterial activity in their anal exudates. Experimentally widowing females, however, led them to decrease levels of antibacterial activity in their anal exudates. Widowed beetles of each sex thus produced anal exudates of comparable antibacterial activity. We suggest that this flexible division of antibacterial activity may be coordinated by Juvenile Hormone. © 2009 British Ecological Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The risk of parasitism and infectious disease is expected to increase with population density as a consequence of positive density-dependent transmission rates. Therefore, species that encounter large fluctuations in population density are predicted to exhibit plasticity in their immune system, such that investment in costly immune defences is adjusted to match the probability of exposure to parasites and pathogens (i.e. density-dependent prophylaxis).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theory predicts that natural selection will erode additive genetic variation in fitness-related traits. However, numerous studies have found considerable heritable variation in traits related to immune function, which should be closely linked to fitness. This could be due to trade-offs maintaining variation in these traits. We used the Egyptian cotton leafworm, Spodoptera littoralis, as a model system to examine the quantitative genetics of insect immune function. We estimated the heritabilities of several different measures of innate immunity and the genetic correlations between these immune traits and a number of life history traits. Our results provide the first evidence for a potential genetic trade-off within the insect immune system, with antibacterial activity (lysozyme-like) exhibiting a significant negative genetic correlation with haemocyte density, which itself is positively genetically correlated with both haemolymph phenoloxidase activity and cuticular melanization. We speculate on a potential trade-off between defence against parasites and predators, mediated by larval colour, and its role in maintaining genetic variation in traits under natural selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phenoloxidase (PO) is believed to be a key mediator of immune function in insects and has been implicated both in non-self recognition and in resistance to a variety of parasites and pathogens, including baculoviruses and parasitoids. Using larvae of the Egyptian cotton leafworm, Spodoptera littoralis, we found that despite its apparent importance, haemolymph PO activity varied markedly between individuals, even amongst insects reared under apparently identical conditions. Sib-analysis methods were used to determine whether individuals varied genetically in their PO activity, and hence in one aspect of immune function. The heritability estimate of haemolymph PO activity was high (h 2 = 0.690 +/- 0.069), and PO activity in the haemolymph was strongly correlated with PO activity in both the cuticle and midgut; the sites of entry for most parasites and pathogens. Haemolymph PO activity was also strongly correlated with the degree to which a synthetic parasite (a small piece of nylon monofilament) was encapsulated and melanized (r = 0.622 +/- 0.142), suggesting that the encapsulation response is also heritable. The mechanism maintaining this genetic variation has yet to be elucidated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Control of Fasciola hepatica infections of livestock in the absence of vaccines depends largely on the chemical triclabendazole (TCBZ) because it is effective against immature and adult parasites. Overdependence on a single drug and improper application is considered a significant factor in increasing global reports of fluke resistant to TCBZ. The mode(s) of action and biological target(s) of TCBZ are not confirmed, delaying detection and the monitoring of early TCBZ resistance. In this study, to further understand liver fluke response to TCBZ, the soluble proteomes of TCBZ-resistant and TCBZ-susceptible isolates of F. hepatica were compared with and without in vitro exposure to the metabolically active form of the parent drug triclabendazole sulphoxide (TCBZ-SO), via two-dimensional gel electrophoresis (2-DE). Gel image analysis revealed proteins displaying altered synthesis patterns and responses both between isolates and under TCBZ-SO exposure. These proteins were identified by mass spectrometry supported by a F. hepatica expressed sequence tag (EST) data set. The TCBZ responding proteins were grouped into three categories; structural proteins, energy metabolism proteins, and “stress” response proteins. This single proteomic investigation supported the reductionist experiments from many laboratories that collectively suggest TCBZ has a range of effects on liver fluke metabolism. Proteomics highlighted differences in the innate proteome profile of different fluke isolates that may influence future therapy and diagnostics design. Two of the TCBZ responding proteins, a glutathione transferase and a fatty acid binding protein, were cloned, produced as recombinants, and both found to bind TCBZ-SO at physiologically relevant concentrations, which may indicate a role in TCBZ metabolism and resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Male sex-biased parasitism (SBP) occurs across a range of mammalian taxa and two contrasting sets of hypotheses have been suggested for its establishment. The first invokes body size per se and suggests that larger individuals are either a larger target for parasites, trade off growth at the expense of immunity or cope better with parasitism than smaller individuals. The second suggests a sex-specific handicap whereby males have reduced immunocompetence compared to females due to the immunodepressive effects of testosterone. The current study investigated whether sex-biased parasitism is driven by host 'body size' or 'sex' using a rodent-tick (Apodemus sylvaticus-. Ixodes ricinus) system. Moreover, the presence or absence of large mammals at study sites were used to control the presence of immature ticks infesting wood mice, allowing the impacts of parasitism on host body mass and female reproduction to be assessed. As expected, male mice had greater tick loads than females and analyses suggested this sex-bias was driven by body mass as opposed to sex. It is therefore likely that larger individuals are a larger target for parasites, trade off growth at the expense of immunity or adapt behavioural responses to parasitism based on their body size. Parasite load had no effect on host body mass or female reproductive output suggesting individuals may alter behaviour or life history strategies to compensate for costs incurred through parasitism. Overall, this study lends support to the 'body size' hypothesis for the formation of sex-biased parasitism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The giant liver fluke, Fascioloides magna, liver parasite of free-living and domestic ruminants of Europe and North America, was analysed in order to determine the origin of European populations and to reveal the biogeography of this originally North American parasite on the European continent. The previously selected variable fragments of the mitochondrial cytochrome c oxidase subunit I (cox1; 384 bp) and nicotinamid dehydrogenase subunit I (nad1; 405 bp) were applied as a tool. The phylogenetic trees and haplotype networks were constructed and the level of genetic structuring was evaluated using population genetic tools. In F. magna individuals originating from all European natural foci (Italy, Czech Republic, Danube floodplain forests) and from four of five major North American enzootic areas, 16 cox1 and 18 nad1 haplotypes were determined. The concatenated sequence set produced 22 distinct haplotypes. The European fluke populations were less diverse than those from North America in that they contained proportionately fewer haplotypes (8), while more substantial level of genetic diversity and higher number of haplotypes (15) were recorded in North America. Only one haplotype was shared between the European (Italy) and North American (USA/Oregon and Canada/Alberta) flukes supporting a western North American origin of the Italian F. magna population. Haplotypes found in Italy were distinct from those determined in the remaining European localities what indicates that introduction of F. magna onto the European continent is a result of more than one event. In Czech focus, a south-eastern US origin of giant liver fluke was revealed. Identical haplotypes, common for parasites from Czech Republic and from expanding focus of Danube floodplain forests, implies introduction of F. magna to the Danube region from an already established Czech focus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While RNA interference (RNAi) has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i) Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (ds)RNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii) The Argonautes (AGOs) responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii) Secondary Argonautes (SAGOs) are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv) All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v) In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research genetic tool in nematodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the fundaments of colony losses and improving the status of colony health will require cross-cutting research initiatives including honeybee pathology, chemistry, genetics and apicultural extension. The 7th framework of the European Union requested research to empirically and experimentally fill knowledge gaps on honeybee pests and diseases, including 'Colony Collapse Disorder' and the impact of parasites, pathogens and pesticides on honeybee mortality. The interactions among these drivers of colony loss will be studied in different European regions, using experimental model systems including selected parasites (e. g. Nosema and Varroa mites), viruses (Deformed Wing Virus, Black Queen Cell Virus, Israeli Acute Paralysis Virus) and model pesticides (thiacloprid, tau-fluvalinate). Transcriptome analyses will be used to explore host-pathogen-pesticide interactions and identify novel genes for disease resistance. Special attention will be given to sublethal and chronic exposure to pesticides and will screen how apicultural practices affect colony health. Novel diagnostic screening methods and sustainable concepts for disease prevention will be developed resulting in new treatments and selection tools for resistant stock. Research initiatives will be linked to various national and international ongoing European, North-and South-American colony health monitoring and research programs, to ensure a global transfer of results to apicultural practice in the world community of beekeepers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bees are major pollinators of Angiosperms and therefore their apparent decline is of importance for humans and biodiversity. We synthesise results of 12 recent reviews to provide a global picture of the threats they face. Habitat loss is the major threat to bee diversity, whilst invasive species, emerging diseases, pesticide use, and climate change also have the potential to impact bee populations. We suggest that future conservation strategies need to prioritise (i) minimising habitat loss, (ii) making agricultural habitats bee-friendly, (iii) training scientists and the public in bee taxonomy and identification, (iv) basic autecological and population genetic studies to underpin conservation strategies, (v) assessing the value of DNA barcoding for bee conservation, (vi) determining the impact of invasive plants, animals, parasites and pathogens, and (vii) integrating this information to understand the potential impact of climate change on current bee diversity.