918 resultados para Continuous random network
Resumo:
Security models for two-party authenticated key exchange (AKE) protocols have developed over time to provide security even when the adversary learns certain secret keys. In this work, we advance the modelling of AKE protocols by considering more granular, continuous leakage of long-term secrets of protocol participants: the adversary can adaptively request arbitrary leakage of long-term secrets even after the test session is activated, with limits on the amount of leakage per query but no bounds on the total leakage. We present a security model supporting continuous leakage even when the adversary learns certain ephemeral secrets or session keys, and give a generic construction of a two-pass leakage-resilient key exchange protocol that is secure in the model; our protocol achieves continuous, after-the-fact leakage resilience with not much more cost than a previous protocol with only bounded, non-after-the-fact leakage.
Resumo:
Robust facial expression recognition (FER) under occluded face conditions is challenging. It requires robust algorithms of feature extraction and investigations into the effects of different types of occlusion on the recognition performance to gain insight. Previous FER studies in this area have been limited. They have spanned recovery strategies for loss of local texture information and testing limited to only a few types of occlusion and predominantly a matched train-test strategy. This paper proposes a robust approach that employs a Monte Carlo algorithm to extract a set of Gabor based part-face templates from gallery images and converts these templates into template match distance features. The resulting feature vectors are robust to occlusion because occluded parts are covered by some but not all of the random templates. The method is evaluated using facial images with occluded regions around the eyes and the mouth, randomly placed occlusion patches of different sizes, and near-realistic occlusion of eyes with clear and solid glasses. Both matched and mis-matched train and test strategies are adopted to analyze the effects of such occlusion. Overall recognition performance and the performance for each facial expression are investigated. Experimental results on the Cohn-Kanade and JAFFE databases demonstrate the high robustness and fast processing speed of our approach, and provide useful insight into the effects of occlusion on FER. The results on the parameter sensitivity demonstrate a certain level of robustness of the approach to changes in the orientation and scale of Gabor filters, the size of templates, and occlusions ratios. Performance comparisons with previous approaches show that the proposed method is more robust to occlusion with lower reductions in accuracy from occlusion of eyes or mouth.
Resumo:
This study aims to explain the entrepreneurial processes as developments of entrepreneurial networks. As a theoretical framework, this study adopts the theory of experimentally organized economy and competence blocs. As suggested by this theory, entrepreneurs select profitable innovations and commercialise them. Through logistic regressions on the subjective and objective dependent variables, we find that nascent firms’ various activities to network customers, innovators, investors, and employees are positively associated with the business emergence. This study identifies the roles of entrepreneurs and the other actors in the entrepreneurial processes.
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow, and the existence with dynamic features was confirmed in congested urban network in downtown Yokohama with real data set. Since the MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. However, limited works have been reported on real world example from signalised arterial network. This paper fuses data from multiple sources (Bluetooth, Loops and Signals) and presents a framework for the development of the MFD for Brisbane, Australia. Existence of the MFD in Brisbane arterial network is confirmed. Different MFDs (from whole network and several sub regions) are evaluated to discover the spatial partitioning for network performance representation. The findings confirmed the usefulness of appropriate network partitioning for traffic monitoring and incident detections. The discussion addressed future research directions.
Resumo:
Recent advances suggest that encoding images through Symmetric Positive Definite (SPD) matrices and then interpreting such matrices as points on Riemannian manifolds can lead to increased classification performance. Taking into account manifold geometry is typically done via (1) embedding the manifolds in tangent spaces, or (2) embedding into Reproducing Kernel Hilbert Spaces (RKHS). While embedding into tangent spaces allows the use of existing Euclidean-based learning algorithms, manifold shape is only approximated which can cause loss of discriminatory information. The RKHS approach retains more of the manifold structure, but may require non-trivial effort to kernelise Euclidean-based learning algorithms. In contrast to the above approaches, in this paper we offer a novel solution that allows SPD matrices to be used with unmodified Euclidean-based learning algorithms, with the true manifold shape well-preserved. Specifically, we propose to project SPD matrices using a set of random projection hyperplanes over RKHS into a random projection space, which leads to representing each matrix as a vector of projection coefficients. Experiments on face recognition, person re-identification and texture classification show that the proposed approach outperforms several recent methods, such as Tensor Sparse Coding, Histogram Plus Epitome, Riemannian Locality Preserving Projection and Relational Divergence Classification.
Resumo:
Voltage rise is the main issue which limits the capacity of Low Voltage (LV) network to accommodate more Renewable Energy (RE) sources. In addition, voltage drop at peak load period is a significant power quality concern. This paper proposes a new robust voltage support strategy based on distributed coordination of multiple distribution static synchronous compensators (DSTATCOMs). The study focuses on LV networks with PV as the RE source for customers. The proposed approach applied to a typical LV network and its advantages are shown comparing with other voltage control strategies.
Resumo:
This project was an innovative approach in developing smart coordination of available energy resources to improve the integration level of PV in distribution network. Voltage and loading issues are considered as the main concerns for future electricity grid which need to be avoided using such resources. A distributed control structure was proposed for the resources in distribution network to avoid noted power quality issues.
Resumo:
The termination in the 2014 budget of the ABC’s international television broadcasting contract to run the federal government’s Australia Network service, barely a year into its ten-year term, was hardly a surprise. “Soft power” or “soft diplomacy” initiatives such as the Australia Network and international aid schemes have been hit especially hard in this budget. If, as Treasurer Hockey has repeatedly claimed, this was a budget for the nation, then what do these decisions say about the value this government places on Australia’s international cultural image and internationalism more generally?
Resumo:
This article develops methods for spatially predicting daily change of dissolved oxygen (Dochange) at both sampled locations (134 freshwater sites in 2002 and 2003) and other locations of interest throughout a river network in South East Queensland, Australia. In order to deal with the relative sparseness of the monitoring locations in comparison to the number of locations where one might want to make predictions, we make a classification of the river and stream locations. We then implement optimal spatial prediction (ordinary and constrained kriging) from geostatistics. Because of their directed-tree structure, rivers and streams offer special challenges. A complete approach to spatial prediction on a river network is given, with special attention paid to environmental exceedances. The methodology is used to produce a map of Dochange predictions for 2003. Dochange is one of the variables measured as part of the Ecosystem Health Monitoring Program conducted within the Moreton Bay Waterways and Catchments Partnership.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
This paper proposes a method, based on polychotomous discrete choice methods, to impute a continuous measure of income when only a bracketed measure of income is available and for only a subset of the obsevations. The method is shown to perform well with CP5 data. © 1991.
Resumo:
This book constitutes the refereed proceedings of the 11th International Conference on Cryptology and Network Security, CANS 2012, held in Darmstadt, Germany, in December 2012. The 22 revised full papers, presented were carefully reviewed and selected from 99 submissions. The papers are organized in topical sections on cryptanalysis; network security; cryptographic protocols; encryption; and s-box theory.
SWIRLnet : portable anemometer network for wind speed measurements of land-falling tropical cyclones
Resumo:
Wind speed measurement systems are sparse in the tropical regions of Australia. Tropical cyclone wind speeds impacting communities are often ‘guestimated’ from analyzing damaged structures. A re-locatable anemometer system is required to enable measurements of wind speeds. This paper discusses design criteria of the tripods and tie down system, proposed deployment of the anemometers, instrumentation, and data logging. Preliminary assessment of the anemometer response indicates a reliable system for 1 second response, however, it is noted that the Australian building code and wind loading standard uses a moving average time of approximately 0.2 seconds for its wind speed design criteria.
Resumo:
The practice of medicine has always aimed at individualized treatment of disease. The relationship between patient and physician has always been a personal one, and the physician's choice of treatment has been intended to be the best fit for the patient's needs. The necessary pooling/grouping of disease families and their assignment to a number of drugs or treatment methods has, consequently, led to an increase in the number of effective therapies. However, given the heterogeneity of most human diseases, and cancer specifically, it is currently impossible for the treating clinician to effectively predict a patient's response and outcome based on current technologies, much less the idiosyncratic resistances and adverse effects associated with the limited therapeutic options.