923 resultados para Complex non-linear paradigm, Non-linearity
Resumo:
For the safety assessment of radioactive waste, the possibility of radionuclide migration has to be considered. Since Np (and also Th due to the long-lived 232-Th) will be responsible for the greatest amount of radioactivity one million years after discharge from the reactor, its (im)-mobilization in the geosphere is of great importance. Furthermore, the chemistry of Np(V) is quite similar (but not identical) to the chemistry of Pu(V). Three species of neptunium may be found in the near field of the waste disposal, but pentavalent neptunium is the most abundant species under a wide range of natural conditions. Within this work, the interaction of Np(V) with the clay mineral montmorillonite and melanodins (as model substances for humic acids) was studied. The sorption of neptunium onto gibbsite, a model clay for montmorillonite, was also investigated. The sorption of neptunium onto γ-alumina and montmorillonite was studied in a parallel doctoral work by S. Dierking. Neptunium is only found in ultra trace amounts in the environment. Therefore, sensitive and specific methods are needed for its determination. The sorption was determined by γ spectroscopy and LSC for the whole concentration range studied. In addition the combination of these techniques with ultrafiltration allowed the study of Np(V) complexation with melanoidins. Regrettably, the available speciation methods (e.g. CE-ICP-MS and EXAFS) are not capable to detect the environmentally relevant neptunium concentrations. Therefore, a combination of batch experiments and speciation analyses was performed. Further, the preparation of hybrid clay-based materials (HCM) montmorillonitemelanoidins for sorption studies was achieved. The formation of hybrid materials begins in the interlayers of the montmorillonite, and then the organic material spreads over the surface of the mineral. The sorption of Np onto HCM was studied at the environmentally relevant concentrations and the results obtained were compared with those predicted by the linear additive model by Samadfam. The sorption of neptunium onto gibbsite was studied in batch experiments and the sorption maximum determined at pH~8.5. The sorption isotherm pointed to the presence of strong and weak sorption sites in gibbsite. The Np speciation was studied by using EXAFS, which showed that the sorbed species was Np(V). The influence of M42 type melanodins on the sorption of Np(V) onto montmorillonite was also investigated at pH 7. The sorption of the melanoidins was affected by the order in which the components were added and by ionic strength. The sorption of Np was affected by ionic strength, pointing to outer sphere sorption, whereas the presence of increasing amounts of melanoidins had little influence on Np sorption.
Resumo:
The collapse of linear polyelectrolyte chains in a poor solvent: When does a collapsing polyelectrolyte collect its counter ions? The collapse of polyions in a poor solvent is a complex system and is an active research subject in the theoretical polyelectrolyte community. The complexity is due to the subtle interplay between hydrophobic effects, electrostatic interactions, entropy elasticity, intrinsic excluded volume as well as specific counter-ion and co-ion properties. Long range Coulomb forces can obscure single molecule properties. The here presented approach is to use just a small amount of screening salt in combination with a very high sample dilution in order to screen intermolecular interaction whereas keeping intramolecular interaction as much as possible (polyelectrolyte concentration cp ≤ 12 mg/L, salt concentration; Cs = 10^-5 mol/L). This is so far not described in literature. During collapse, the polyion is subject to a drastic change in size along with strong reduction of free counterions in solution. Therefore light scattering was utilized to obtain the size of the polyion whereas a conductivity setup was developed to monitor the proceeding of counterion collection by the polyion. Partially quaternized PVP’s below and above the Manning limit were investigated and compared to the collapse of their uncharged precursor. The collapses were induced by an isorefractive solvent/non-solvent mixture consisting of 1-propanol and 2-pentanone, with nearly constant dielectric constant. The solvent quality for the uncharged polyion could be quantified which, for the first time, allowed the experimental investigation of the effect of electrostatic interaction prior and during polyion collapse. Given that the Manning parameter M for QPVP4.3 is as low as lB / c = 0.6 (lB the Bjerrum length and c the mean contour distance between two charges), no counterion binding should occur. However the Walden product reduces with first addition of non solvent and accelerates when the structural collapse sets in. Since the dielectric constant of the solvent remains virtually constant during the chain collapse, the counterion binding is entirely caused by the reduction in the polyion chain dimension. The collapse is shifted to lower wns with higher degrees of quaternization as the samples QPVP20 and QPVP35 show (M = 2.8 respectively 4.9). The combination of light scattering and conductivity measurement revealed for the first time that polyion chains already collect their counter ions well above the theta-dimension when the dimensions start to shrink. Due to only small amounts of screening salt, strong electrostatic interactions bias dynamic as well as static light scattering measurements. An extended Zimm formula was derived to account for this interaction and to obtain the real chain dimensions. The effective degree of dissociation g could be obtained semi quantitatively using this extrapolated static in combination with conductivity measurements. One can conclude the expansion factor a and the effective degree of ionization of the polyion to be mutually dependent. In the good solvent regime g of QPVP4.3, QPVP20 and QPVP35 exhibited a decreasing value in the order 1 > g4.3 > g20 > g35. The low values of g for QPVP20 and QPVP35 are assumed to be responsible for the prior collapse of the higher quaternized samples. Collapse theory predicts dipole-dipole attraction to increase accordingly and even predicts a collapse in the good solvent regime. This could be exactly observed for the QPVP35 sample. The experimental results were compared to a newly developed theory of uniform spherical collapse induced by concomitant counterion binding developed by M. Muthukumar and A. Kundagrami. The theory agrees qualitatively with the location of the phase boundary as well as the trend of an increasing expansion with an increase of the degree of quaternization. However experimental determined g for the samples QPVP4.3, QPVP20 and QPVP35 decreases linearly with the degree of quaternization whereas this theory predicts an almost constant value.
Resumo:
The meaning of a place has been commonly assigned to the quality of having root (rootedness) or sense of belonging to that setting. While on the contrary, people are nowadays more concerned with the possibilities of free moving and networks of communication. So, the meaning, as well as the materiality of architecture has been dramatically altered with these forces. It is therefore of significance to explore and redefine the sense and the trend of architecture at the age of flow. In this dissertation, initially, we review the gradually changing concept of "place-non-place" and its underlying technological basis. Then we portray the transformation of meaning of architecture as influenced by media and information technology and advanced methods of mobility, in the dawn of 21st century. Against such backdrop, there is a need to sort and analyze architectural practices in response to the triplet of place-non-place and space of flow, which we plan to achieve conclusively. We also trace the concept of flow in the process of formation and transformation of old cities. As a brilliant case study, we look at Persian Bazaar from a socio-architectural point of view. In other word, based on Robert Putnam's theory of social capital, we link social context of the Bazaar with architectural configuration of cities. That is how we believe "cities as flow" are not necessarily a new paradigm.
Resumo:
Welche genetische Unterschiede machen uns verschieden von unseren nächsten Verwandten, den Schimpansen, und andererseits so ähnlich zu den Schimpansen? Was wir untersuchen und auch verstehen wollen, ist die komplexe Beziehung zwischen den multiplen genetischen und epigenetischen Unterschieden, deren Interaktion mit diversen Umwelt- und Kulturfaktoren in den beobachteten phänotypischen Unterschieden resultieren. Um aufzuklären, ob chromosomale Rearrangements zur Divergenz zwischen Mensch und Schimpanse beigetragen haben und welche selektiven Kräfte ihre Evolution geprägt haben, habe ich die kodierenden Sequenzen von 2 Mb umfassenden, die perizentrischen Inversionsbruchpunkte flankierenden Regionen auf den Chromosomen 1, 4, 5, 9, 12, 17 und 18 untersucht. Als Kontrolle dienten dabei 4 Mb umfassende kollineare Regionen auf den rearrangierten Chromosomen, welche mindestens 10 Mb von den Bruchpunktregionen entfernt lagen. Dabei konnte ich in den Bruchpunkten flankierenden Regionen im Vergleich zu den Kontrollregionen keine höhere Proteinevolutionsrate feststellen. Meine Ergebnisse unterstützen nicht die chromosomale Speziationshypothese für Mensch und Schimpanse, da der Anteil der positiv selektierten Gene (5,1% in den Bruchpunkten flankierenden Regionen und 7% in den Kontrollregionen) in beiden Regionen ähnlich war. Durch den Vergleich der Anzahl der positiv und negativ selektierten Gene per Chromosom konnte ich feststellen, dass Chromosom 9 die meisten und Chromosom 5 die wenigsten positiv selektierten Gene in den Bruchpunkt flankierenden Regionen und Kontrollregionen enthalten. Die Anzahl der negativ selektierten Gene (68) war dabei viel höher als die Anzahl der positiv selektierten Gene (17). Eine bioinformatische Analyse von publizierten Microarray-Expressionsdaten (Affymetrix Chip U95 und U133v2) ergab 31 Gene, die zwischen Mensch und Schimpanse differentiell exprimiert sind. Durch Untersuchung des dN/dS-Verhältnisses dieser 31 Gene konnte ich 7 Gene als negativ selektiert und nur 1 Gen als positiv selektiert identifizieren. Dieser Befund steht im Einklang mit dem Konzept, dass Genexpressionslevel unter stabilisierender Selektion evolvieren. Die meisten positiv selektierten Gene spielen überdies eine Rolle bei der Fortpflanzung. Viele dieser Speziesunterschiede resultieren eher aus Änderungen in der Genregulation als aus strukturellen Änderungen der Genprodukte. Man nimmt an, dass die meisten Unterschiede in der Genregulation sich auf transkriptioneller Ebene manifestieren. Im Rahmen dieser Arbeit wurden die Unterschiede in der DNA-Methylierung zwischen Mensch und Schimpanse untersucht. Dazu wurden die Methylierungsmuster der Promotor-CpG-Inseln von 12 Genen im Cortex von Menschen und Schimpansen mittels klassischer Bisulfit-Sequenzierung und Bisulfit-Pyrosequenzierung analysiert. Die Kandidatengene wurden wegen ihrer differentiellen Expressionsmuster zwischen Mensch und Schimpanse sowie wegen Ihrer Assoziation mit menschlichen Krankheiten oder dem genomischen Imprinting ausgewählt. Mit Ausnahme einiger individueller Positionen zeigte die Mehrzahl der analysierten Gene keine hohe intra- oder interspezifische Variation der DNA-Methylierung zwischen den beiden Spezies. Nur bei einem Gen, CCRK, waren deutliche intraspezifische und interspezifische Unterschiede im Grad der DNA-Methylierung festzustellen. Die differentiell methylierten CpG-Positionen lagen innerhalb eines repetitiven Alu-Sg1-Elements. Die Untersuchung des CCRK-Gens liefert eine umfassende Analyse der intra- und interspezifischen Variabilität der DNA-Methylierung einer Alu-Insertion in eine regulatorische Region. Die beobachteten Speziesunterschiede deuten darauf hin, dass die Methylierungsmuster des CCRK-Gens wahrscheinlich in Adaption an spezifische Anforderungen zur Feinabstimmung der CCRK-Regulation unter positiver Selektion evolvieren. Der Promotor des CCRK-Gens ist anfällig für epigenetische Modifikationen durch DNA-Methylierung, welche zu komplexen Transkriptionsmustern führen können. Durch ihre genomische Mobilität, ihren hohen CpG-Anteil und ihren Einfluss auf die Genexpression sind Alu-Insertionen exzellente Kandidaten für die Förderung von Veränderungen während der Entwicklungsregulation von Primatengenen. Der Vergleich der intra- und interspezifischen Methylierung von spezifischen Alu-Insertionen in anderen Genen und Geweben stellt eine erfolgversprechende Strategie dar.
Resumo:
The pulsed jet Fourier transform microwave spectroscopy have been applied to several molecular complexes involving H2O, freons, methane, carboxylic acids, and rare gas. The obtained results showcase the suitability of this technique for studying the intermolecular interactions. The rotational spectra of three water adducts of halogenated organic molecules, i.e. chlorotrifluoroethylene, isoflurane and alfa,alfa,alfa,-trifluoroanisole, have been investigated. It has been found that, the halogenation of the partner molecules definitely changes the way in which water will link to the partner molecule. Quadrupole hyperfine structures and/or the tunneling splittings have been observed in the rotational spectra of difluoromethane-dichloromethane, chlorotrifluorometane-fluoromethane, difluoromethane-formaldehyde and trifluoromethane-benzene. These features have been useful to describe their intermolecular interactions (weak hydrogen bonds or halogen bonds), and to size the potential energy surfaces of their internal motions. The rotational spectrum of pyridine-methane pointed out that methane prefers to locate above the ring and link to pyridine through a C-H•••π weak hydrogen bond, rather than the C-H•••n interaction. This behavior, typical of complexes of pyridine with rare gases, suggests classifying CH4, in relation to its ability to form molecular complexes with aromatic molecules, as a pseudo rare gas. The conformational equilibria of three bi-molecules of carboxylic acids, acrylic acid-trifluoroacetic acid, difluoroacetic acid-formic acid and acrylic acid-fluoroacetic acid have been studied. The increase of the hydrogen bond length upon H→D isotopic substitution (Ubbelohde effect) has been deduced from the elongation of the carboxylic carbons C•••C distance. The van der Waals complex tetrahydrofuran-krypton shows that the systematic doubling of the rotational lines has been attributed to the residual pseudo-rotation of tetrahydrofuran in the complex, based on the values of the Coriolis coupling constants, and on the type (mu_b) of the interstate transitions.
Resumo:
Self-assembled molecular structures were investigated on insulating substrate surfaces using non-contact atomic force microscopy. Both, substrate preparation and molecule deposition, took place under ultra-high vacuum conditions. First, C60 molecules were investigated on the TiO2 (110) surface. This surface exhibits parallel running troughs at the nanometer scale, which strongly steer the assembly of the molecules. This is in contrast to the second investigated surface. The CaF2 (111) surface is atomically flat and the molecular assemblyrnwas observed to be far less affected by the surface. Basically different island structures were observed to what is typically know. Based on extensive experimental studies and theoretical considerations, a comprehensive picture of the processes responsible for the island formation of C60 molecules on this insulating surfaces was developed. The key process for the emergence of the observed novel island structures was made out to be the dewetting of molecules from the substrate. This new knowledge allows to further understand andrnexploit self-assembly techniques in structure fabrication on insulating substrate surfaces. To alter island formation and island structure, C60 molecules were codeposited with second molecule species (PTCDI and SubPc) on the CaF2 (111) surface. Depending on the order of deposition, quiet different structures were observed to arise. Thus, these are the first steps towards more complex functional arrangements consisting of two molecule species on insulating surfaces.
Resumo:
Environmental decay in porous masonry materials, such as brick and mortar, is a widespread problem concerning both new and historic masonry structures. The decay mechanisms are quite complex dependng upon several interconnected parameters and from the interaction with the specific micro-climate. Materials undergo aesthetical and substantial changes in character but while many studies have been carried out, the mechanical aspect has been largely understudied while it bears true importance from the structural viewpoint. A quantitative assessment of the masonry material degradation and how it affects the load-bearing capacity of masonry structures appears missing. The research work carried out, limiting the attention to brick masonry addresses this issue through an experimental laboratory approach via different integrated testing procedures, both non-destructive and mechanical, together with monitoring methods. Attention was focused on transport of moisture and salts and on the damaging effects caused by the crystallization of two different salts, sodium chloride and sodium sulphate. Many series of masonry specimens, very different in size and purposes were used to track the damage process since its beginning and to monitor its evolution over a number of years Athe same time suitable testing techniques, non-destructive, mini-invasive, analytical, of monitoring, were validated for these purposes. The specimens were exposed to different aggressive agents (in terms of type of salt, of brine concentration, of artificial vs. open-air natural ageing, …), tested by different means (qualitative vs. quantitative, non destructive vs. mechanical testing, punctual vs. wide areas, …), and had different size (1-, 2-, 3-header thick walls, full-scale walls vs. small size specimens, brick columns and triplets vs. small walls, masonry specimens vs. single units of brick and mortar prisms, …). Different advanced testing methods and novel monitoring techniques were applied in an integrated holistic approach, for quantitative assessment of masonry health state.
Resumo:
This thesis concerns the study of complex conformational surfaces and tautomeric equilibria of molecules and molecular complexes by quantum chemical methods and rotational spectroscopy techniques. In particular, the focus of this research is on the effects of substitution and noncovalent interactions in determining the energies and geometries of different conformers, tautomers or molecular complexes. The Free-Jet Absorption Millimeter Wave spectroscopy and the Pulsed-Jet Fourier Transform Microwave spectroscopy have been applied to perform these studies and the obtained results showcase the suitability of these techniques for the study of conformational surfaces and intermolecular interactions. The series of investigations of selected medium-size molecules and complexes have shown how different instrumental setups can be used to obtain a variety of results on molecular properties. The systems studied, include molecules of biological interest such as anethole and molecules of astrophysical interest such as N-methylaminoethanol. Moreover halogenation effects have been investigated on halogen substituted tautomeric systems (5-chlorohydroxypyridine and 6-chlorohydroxypyridine), where it has shown that the position of the inserted halogen atom affects the prototropic equilibrium. As for fluorination effects, interesting results have been achieved investigating some small complexes where a molecule of water is used as a probe to reveal the changes on the electrostatic potential of different fluorinated compounds: 2-fluoropyridine, 3-fluoropyridine and penta-fluoropyridine. While in the case of the molecular complex between water and 2-fluoropyridine and 3-fluoropyridine the geometry of the complex with one water molecule is analogous to that of pyridine with the water molecule linked to the pyridine nitrogen, the case of pentafluoropyridine reveals the effect of perfluorination and the water oxygen points towards the positive center of the pyridine ring. Additional molecular adducts with a molecule of water have been analyzed (benzylamine-water and acrylic acid-water) in order to reveal the stabilizing driving forces that characterize these complexes.
Resumo:
Die vorliegende Arbeit behandelt die Entwicklung und Verbesserung von linear skalierenden Algorithmen für Elektronenstruktur basierte Molekulardynamik. Molekulardynamik ist eine Methode zur Computersimulation des komplexen Zusammenspiels zwischen Atomen und Molekülen bei endlicher Temperatur. Ein entscheidender Vorteil dieser Methode ist ihre hohe Genauigkeit und Vorhersagekraft. Allerdings verhindert der Rechenaufwand, welcher grundsätzlich kubisch mit der Anzahl der Atome skaliert, die Anwendung auf große Systeme und lange Zeitskalen. Ausgehend von einem neuen Formalismus, basierend auf dem großkanonischen Potential und einer Faktorisierung der Dichtematrix, wird die Diagonalisierung der entsprechenden Hamiltonmatrix vermieden. Dieser nutzt aus, dass die Hamilton- und die Dichtematrix aufgrund von Lokalisierung dünn besetzt sind. Das reduziert den Rechenaufwand so, dass er linear mit der Systemgröße skaliert. Um seine Effizienz zu demonstrieren, wird der daraus entstehende Algorithmus auf ein System mit flüssigem Methan angewandt, das extremem Druck (etwa 100 GPa) und extremer Temperatur (2000 - 8000 K) ausgesetzt ist. In der Simulation dissoziiert Methan bei Temperaturen oberhalb von 4000 K. Die Bildung von sp²-gebundenem polymerischen Kohlenstoff wird beobachtet. Die Simulationen liefern keinen Hinweis auf die Entstehung von Diamant und wirken sich daher auf die bisherigen Planetenmodelle von Neptun und Uranus aus. Da das Umgehen der Diagonalisierung der Hamiltonmatrix die Inversion von Matrizen mit sich bringt, wird zusätzlich das Problem behandelt, eine (inverse) p-te Wurzel einer gegebenen Matrix zu berechnen. Dies resultiert in einer neuen Formel für symmetrisch positiv definite Matrizen. Sie verallgemeinert die Newton-Schulz Iteration, Altmans Formel für beschränkte und nicht singuläre Operatoren und Newtons Methode zur Berechnung von Nullstellen von Funktionen. Der Nachweis wird erbracht, dass die Konvergenzordnung immer mindestens quadratisch ist und adaptives Anpassen eines Parameters q in allen Fällen zu besseren Ergebnissen führt.
Resumo:
Long-term endurance sports are associated with atrial remodeling and an increased risk for atrial fibrillation (AF) and atrial flutter. Pro-atrial natriuretic peptide (pro-ANP) is a marker of atrial wall tension and elevated in patients with AF. The aim of this study was to test the hypothesis that atrial remodeling would be perpetuated by repetitive episodes of atrial stretching during strenuous competitions, reflected by elevated levels of pro-ANP. A cross-sectional study was performed on nonelite runners scheduled to participate in the 2010 Grand Prix of Bern, a 10-mile race. Four hundred ninety-two marathon and nonmarathon runners applied for participation, 70 were randomly selected, and 56 entered the final analysis. Subjects were stratified according to former marathon participations: a control group (nonmarathon runners, n = 22), group 1 (1 to 4 marathons, n = 16), and group 2 (≥5 marathons, n = 18). Results were adjusted for age, training years, and average weekly endurance training hours. The mean age was 42 ± 7 years. Compared to the control group, marathon runners in groups 1 and 2 had larger left atria (25 ± 6 vs 30 ± 6 vs 34 ± 7 ml/m(2), p = 0.002) and larger right atria (27 ± 7 vs 31 ± 8 vs 35 ± 5 ml/m(2), p = 0.024). Pro-ANP levels at baseline were higher in marathon runners (1.04 ± 0.38 vs 1.42 ± 0.74 vs 1.67 ± 0.69 nmol/L, p = 0.006). Pro-ANP increased significantly in all groups after the race. In multiple linear regression analysis, marathon participation was an independent predictor of left atrial (β = 0.427, p <0.001) and right atrial (β = 0.395, p = 0.006) remodeling. In conclusion, marathon running was associated with progressive left and right atrial remodeling, possibly induced by repetitive episodes of atrial stretching. The altered left and right atrial substrate may facilitate atrial arrhythmias.
Resumo:
INTRODUCTION: Winter sports have evolved from an upper class activity to a mass industry. Especially sledging regained popularity at the start of this century, with more and more winter sports resorts offering sledge runs. This study investigated the rates of sledging injuries over the last 13 years and analysed injury patterns specific for certain age groups, enabling us to make suggestions for preventive measures. METHODS: We present a retrospective analysis of prospectively collected data. From 1996/1997 to 2008/2009, all patients involved in sledging injuries were recorded upon admission to a Level III trauma centre. Injuries were classified into body regions according to the Abbreviated Injury Scale (AIS). The Injury Severity Score (ISS) was calculated. Patients were stratified into 7 age groups. Associations between age and injured body region were tested using the chi-squared test. The slope of the linear regression with 95% confidence intervals was calculated for the proportion of patients with different injured body regions and winter season. RESULTS: 4956 winter sports patients were recorded. 263 patients (5%) sustained sledging injuries. Sledging injury patients had a median age of 22 years (interquartile range [IQR] 14-38 years) and a median ISS of 4 (IQR 1-4). 136 (51.7%) were male. Injuries (AIS≥2) were most frequent to the lower extremities (n=91, 51.7% of all AIS≥2 injuries), followed by the upper extremities (n=48, 27.3%), the head (n=17, 9.7%), the spine (n=7, 4.0%). AIS≥2 injuries to different body regions varied from season to season, with no significant trends (p>0.19). However, the number of patients admitted with AIS≥2 injuries increased significantly over the seasons analysed (p=0.031), as did the number of patients with any kind of sledging injury (p=0.004). Mild head injuries were most frequent in the youngest age group (1-10 years old). Injuries to the lower extremities were more often seen in the age groups from 21 to 60 years (p<0.001). CONCLUSION: Mild head trauma was mainly found in very young sledgers, and injuries to the lower extremities were more frequent in adults. In accordance with the current literature, we suggest that sledging should be performed in designated, obstacle-free areas that are specially prepared, and that children should always be supervised by adults. The effect of routine use of helmets and other protective devices needs further evaluation, but it seems evident that these should be obligatory on official runs.
Resumo:
Under President Ronald Reagan, the White House pursued a complex foreign policy towards the Contras, rebels in trying to overthrow the Sandinista regime in Nicaragua, in Nicaragua. In 1979, the leftist Sandinista government seized power in Nicaragua. The loss of the previous pro-United States Somoza military dictatorship deeply troubled the conservatives, for whom eradication of communism internationally was a top foreign policy goal. Consequently, the Reagan Administration sought to redress the policy of his predecessor, Jimmy Carter, and assume a hard line stance against leftist regimes in Central America. Reagan and the conservatives within his administration, therefore, supported the Contra through military arms, humanitarian aid, and financial contributions. This intervention in Nicaragua, however, failed to garner popular support from American citizens and Democrats. Consequently, between 1982 and 1984 Congress prohibited further funding to the Contras in a series of legislation called the Boland Amendments. These Amendments barred any military aid from reaching the Contras, including through intelligence agencies. Shortly after their passage, Central Intelligence Agency Director William Casey and influential members of Reagan¿s National Security Council (NSC) including National Security Advisor Robert McFarlane, NSC Aide Oliver North, and Deputy National Security Advisor John Poindexter cooperated to identify and exploit loopholes in the legislation. By recognizing the NSC as a non-intelligence body, these masterminds orchestrated a scheme in which third parties, including foreign countries and private donors, contributed both financially and through arms donations to sustain the Contras independently of Congressional oversight. This thesis explores the mechanism and process of soliciting donations from private individuals, recognizing the forces and actors that created a situation for covert action to continue without detection. Oliver North, the main actor of the state, worked within his role as an NSC bureaucrat to network with influential politicians and private individuals to execute the orders of his superiors and shape foreign policy. Although Reagan articulated his desire for the Contras to remain a military presence in Nicaragua, he delegated the details of policy to his subordinates, which allowed this scheme to flourish. Second, this thesis explores the individual donors, analyzing their role as private citizens in sustaining and encouraging the policy of the Reagan Administration. The Contra movement found non-state support from followers of the New Right, demonstrated through financial and organizational assistance, that allowed the Reagan Administration¿s statistically unpopular policy in Nicaragua to continue. I interpret these donors as politically involved, but politically philanthropic, individuals, donating to their charity of choice to further the principles of American freedom internationally in a Cold War environment. The thesis then proceeds to assess the balance of power between the executive and other political actors in shaping policy, concluding that the executive cannot act alone in the formulation and implementation of foreign policy.
Resumo:
Recent optimizations of NMR spectroscopy have focused their attention on innovations in new hardware, such as novel probes and higher field strengths. Only recently has the potential to enhance the sensitivity of NMR through data acquisition strategies been investigated. This thesis has focused on the practice of enhancing the signal-to-noise ratio (SNR) of NMR using non-uniform sampling (NUS). After first establishing the concept and exact theory of compounding sensitivity enhancements in multiple non-uniformly sampled indirect dimensions, a new result was derived that NUS enhances both SNR and resolution at any given signal evolution time. In contrast, uniform sampling alternately optimizes SNR (t < 1.26T2) or resolution (t~3T2), each at the expense of the other. Experiments were designed and conducted on a plant natural product to explore this behavior of NUS in which the SNR and resolution continue to improve as acquisition time increases. Possible absolute sensitivity improvements of 1.5 and 1.9 are possible in each indirect dimension for matched and 2x biased exponentially decaying sampling densities, respectively, at an acquisition time of ¿T2. Recommendations for breaking into the linear regime of maximum entropy (MaxEnt) are proposed. Furthermore, examination into a novel sinusoidal sampling density resulted in improved line shapes in MaxEnt reconstructions of NUS data and comparable enhancement to a matched exponential sampling density. The Absolute Sample Sensitivity derived and demonstrated here for NUS holds great promise in expanding the adoption of non-uniform sampling.
Resumo:
Polyetheretherketone (PEEK) is a novel polymer with potential advantages for its use in demanding orthopaedic applications (e.g. intervertebral cages). However, the influence of a physiological environment on the mechanical stability of PEEK has not been reported. Furthermore, the suitability of the polymer for use in highly stressed spinal implants such as intervertebral cages has not been investigated. Therefore, a combined experimental and analytical study was performed to address these open questions. A quasi-static mechanical compression test was performed to compare the initial mechanical properties of PEEK-OPTIMA polymer in a dry, room-temperature and in an aqueous, 37 degrees C environment (n=10 per group). The creep behaviour of cylindrical PEEK polymer specimens (n=6) was measured in a simulated physiological environment at an applied stress level of 10 MPa for a loading duration of 2000 hours (12 weeks). To compare the biomechanical performance of different intervertebral cage types made from PEEK and titanium under complex loading conditions, a three-dimensional finite element model of a functional spinal unit was created. The elastic modulus of PEEK polymer specimens in a physiological environment was 1.8% lower than that of specimens tested at dry, room temperature conditions (P<0.001). The results from the creep test showed an average creep strain of less than 0.1% after 2000 hours of loading. The finite element analysis demonstrated high strain and stress concentrations at the bone/implant interface, emphasizing the importance of cage geometry for load distribution. The stress and strain maxima in the implants were well below the material strength limits of PEEK. In summary, the experimental results verified the mechanical stability of the PEEK-OPTIMA polymer in a simulated physiological environment, and over extended loading periods. Finite element analysis supported the use of PEEK-OPTIMA for load-bearing intervertebral implants.
Resumo:
BACKGROUND: The arginine-vasopressin 1a receptor has been identified as a key determinant for social behaviour in Microtus voles, humans and other mammals. Nevertheless, the genetic bases of complex phenotypic traits like differences in social and mating behaviour among species and individuals remain largely unknown. Contrary to previous studies focusing on differences in the promotor region of the gene, we investigate here the level of functional variation in the coding region (exon 1) of this locus. RESULTS: We detected high sequence diversity between higher mammalian taxa as well as between species of the genus Microtus. This includes length variation and radical amino acid changes, as well as the presence of distinct protein variants within individuals. Additionally, negative selection prevails on most parts of the first exon of the arginine-vasopressin receptor 1a (avpr1a) gene but it contains regions with higher rates of change that harbour positively selected sites. Synonymous and non-synonymous substitution rates in the avpr1a gene are not exceptional compared to other genes, but they exceed those found in related hormone receptors with similar functions. DISCUSSION: These results stress the importance of considering variation in the coding sequence of avpr1a in regards to associations with life history traits (e.g. social behaviour, mating system, habitat requirements) of voles, other mammals and humans in particular.