935 resultados para Complete Genome Sequence
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Large distribution and high sequence identity of a Copia-type retrotransposon in angiosperm families
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Let (R,m) be a local complete intersection, that is, a local ring whose m-adic completion is the quotient of a complete regular local ring by a regular sequence. Let M and N be finitely generated R-modules. This dissertation concerns the vanishing of Tor(M, N) and Ext(M, N). In this context, M satisfies Serre's condition (S_{n}) if and only if M is an nth syzygy. The complexity of M is the least nonnegative integer r such that the nth Betti number of M is bounded by a polynomial of degree r-1 for all sufficiently large n. We use this notion of Serre's condition and complexity to study the vanishing of Tor_{i}(M, N). In particular, building on results of C. Huneke, D. Jorgensen and R. Wiegand [32], and H. Dao [21], we obtain new results showing that good depth properties on the R-modules M, N and MtensorN force the vanishing of Tor_{i}(M, N) for all i>0. We give examples showing that our results are sharp. We also show that if R is a one-dimensional domain and M and MtensorHom(M,R) are torsion-free, then M is free if and only if M has complexity at most one. If R is a hypersurface and Ext^{i}(M, N) has finite length for all i>>0, then the Herbrand difference [18] is defined as length(Ext^{2n}(M, N))-(Ext^{2n-1}(M, N)) for some (equivalently, every) sufficiently large integer n. In joint work with Hailong Dao, we generalize and study the Herbrand difference. Using the Grothendieck group of finitely generated R-modules, we also examined the number of consecutive vanishing of Ext^{i}(M, N) needed to ensure that Ext^{i}(M, N) = 0 for all i>>0. Our results recover and improve on most of the known bounds in the literature, especially when R has dimension two.
Resumo:
Leaves of Cassia hoffmannseggii, a wild fabaceous species found in the Atlantic Forest, with a severe mosaic symptom were collected in Pernambuco State, Brazil. By transmission electron microscopy, two types of virus particles were found: the first was recognized as particles of a potyvirus, which was later identified as Cowpea aphid-borne mosaic virus; and the second was isometric and present in high concentration. The observation of vesicles at the periphery of chloroplasts suggested a tymovirus infection, which was confirmed by subsequent assays. A serological assay against several tymovirus antisera resulted in positive reaction of this tymo-like virus with an antiserum of Passion fruit yellow mosaic virus. By means of RT-PCR and using degenerated primers for the conserved region of RNA-dependent RNA polymerase (RdRp) gene of tymoviruses, a specific DNA fragment was amplified and sequenced. Based on this sequence, a specific forward primer was synthesized and successfully used to amplify the 3' terminal genome region, containing the partial RdRp gene and the complete coat protein (CP) sequences. The CP was 188 amino acids (aa) long, and the highest CP aa identity was observed with Kennedya yellow mosaic virus (61 %). Based on the current ICTV demarcation criterion, this isolate was considered as a distinct tymovirus and tentatively named as Cassia yellow mosaic-associated virus.
Assessing Pathogenicity for Novel Mutation/Sequence Variants: The Value of Healthy Older Individuals
Resumo:
Improvement in DNA technology is increasingly revealing unexpected/unknown mutations in healthy persons and generating anxiety due to their still unknown health consequences. We report a 44-year-old healthy father of a 10-year-old daughter with bilateral coloboma and hearing loss, but without muscle weakness, in whom a whole-genome CGH revealed a deletion of exons 38-44 in the dystrophin gene. This mutation was inherited from her asymptomatic father, who was further clinically and molecularly evaluated for prognosis and genetic counseling (GC). This deletion was never identified by us in 982 Duchenne/Becker patients. To assess whether the present case represents a rare case of non-penetrance, and aiming to obtain more information for prognosis and GC, we suggested that healthy older relatives submit their DNA for analysis, to which several complied. Mutation analysis revealed that his mother, brother, and 56-year-old maternal uncle also carry the 38-44 deletion, suggesting it an unlikely cause of muscle weakness. Genome sequencing will disclose mutations and variants whose health impact are still unknown, raising important problems in interpreting results, defining prognosis, and discussing GC. We suggest that, in addition to family history, keeping the DNA of older relatives could be very informative, in particular for those interested in having their genome sequenced.
Resumo:
Transposons are abundant components of eukaryotic genomes, and play important role in genome evolution. The knowledge about these elements should contribute to the understanding of their impact on the host genomes. The hAT transposon superfamily is one of the best characterized superfamilies in diverse organisms, nevertheless, a detailed study of these elements was never carried in sugarcane. To address this question we analyzed 32 cDNAs similar to that of hAT superfamily of transposons previously identified in the sugarcane transcriptome. Our results revealed that these hAT-like transposases cluster in one highly homogeneous and other more heterogeneous lineage. We present evidences that support the hypothesis that the highly homogeneous group is a domesticated transposase while the remainder of the lineages are composed of transposon units. The first is common to grasses, clusters significantly with domesticated transposases from Arabidopsis, rice and sorghum and is expressed in different tissues of two sugarcane cultivars analyzed. In contrast, the more heterogeneous group represents at least two transposon lineages. We recovered five genomic versions of one lineage, characterizing a novel transposon family with conserved DDE motif, named SChAT. These results indicate the presence of at least three distinct lineages of hAT-like transposase paralogues in sugarcane genome, including a novel transposon family described in Saccharum and a domesticated transposase. Taken together, these findings permit to follow the diversification of some hAT transposase paralogues in sugarcane, aggregating knowledge about the co-evolution of transposons and their host genomes.
Resumo:
Background: Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs) are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out. Results: Sixty complete LTR-RT elements were classified into 35 families within four Copia and three Gypsy lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of Gypsy/heterochromatin, Copia/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of Ale1, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements. Conclusions: Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.
Resumo:
The major cause of athlete's foot is Trichophyton rubrum, a dermatophyte or fungal pathogen of human skin. To facilitate molecular analyses of the dermatophytes, we sequenced T. rubrum and four related species, Trichophyton tonsurans, Trichophyton equinum, Microsporum canis, and Microsporum gypseum. These species differ in host range, mating, and disease progression. The dermatophyte genomes are highly colinear yet contain gene family expansions not found in other human-associated fungi. Dermatophyte genomes are enriched for gene families containing the LysM domain, which binds chitin and potentially related carbohydrates. These LysM domains differ in sequence from those in other species in regions of the peptide that could affect substrate binding. The dermatophytes also encode novel sets of fungus-specific kinases with unknown specificity, including nonfunctional pseudokinases, which may inhibit phosphorylation by competing for kinase sites within substrates, acting as allosteric effectors, or acting as scaffolds for signaling. The dermatophytes are also enriched for a large number of enzymes that synthesize secondary metabolites, including dermatophyte-specific genes that could synthesize novel compounds. Finally, dermatophytes are enriched in several classes of proteases that are necessary for fungal growth and nutrient acquisition on keratinized tissues. Despite differences in mating ability, genes involved in mating and meiosis are conserved across species, suggesting the possibility of cryptic mating in species where it has not been previously detected. These genome analyses identify gene families that are important to our understanding of how dermatophytes cause chronic infections, how they interact with epithelial cells, and how they respond to the host immune response. IMPORTANCE Athlete's foot, jock itch, ringworm, and nail infections are common fungal infections, all caused by fungi known as dermatophytes (fungi that infect skin). This report presents the genome sequences of Trichophyton rubrum, the most frequent cause of athlete's foot, as well as four other common dermatophytes. Dermatophyte genomes are enriched for four gene classes that may contribute to the ability of these fungi to cause disease. These include (i) proteases secreted to degrade skin; (ii) kinases, including pseudokinases, that are involved in signaling necessary for adapting to skin; (iii) secondary metabolites, compounds that act as toxins or signals in the interactions between fungus and host; and (iv) a class of proteins (LysM) that appear to bind and mask cell wall components and carbohydrates, thus avoiding the host's immune response to the fungi. These genome sequences provide a strong foundation for future work in understanding how dermatophytes cause disease.
Resumo:
The non-classical human leukocyte antigen (HLA) class I genes present a very low rate of variation. So far, only 10 HLA-E alleles encoding three proteins have been described, but only two are frequently found in worldwide populations. Because of its historical background, Brazilians are very suitable for population genetic studies. Therefore, 104 bone marrow donors from Brazil were evaluated for HLA-E exons 14. Seven variation sites were found, including two known single nucleotide polymorphisms (SNPs) at positions +424 and +756 and five new SNPs at positions +170 (intron 1), +1294 (intron 3), +1625, +1645 and +1857 (exon 4). Haplotyping analysis did show eight haplotypes, three of them known as E*01:01:01, E*01:03:01 and E*01:03:02:01 and five HLA-E new alleles that carry the new variation sites. The HLA-E*01:01:01 allele was the predominant haplotype (62.50%), followed by E*01:03:02:01 (24.52%). Selective neutrality tests have disclosed an interesting pattern of selective pressures in which balancing selection is probably shaping allele frequency distributions at an SNP at exon 3 (codon 107), sequence diversity at exon 4 and the non-coding regions is facing significant purifying pressure. Even in an admixed population such as the Brazilian one, the HLA-E locus is very conserved, presenting few polymorphic SNPs in the coding region.
Resumo:
The objective of this study is to compare the effects of canine guidance (CG) and bilateral balanced occlusion (BBO) on denture satisfaction and kinesiographic parameters of complete denture wearers, by means of a cross-over trial. Fifty edentulous patients received new maxillary and mandibular complete dentures. After the intra-oral adjustments and adaptation period, 44 participants were enrolled in the trial and randomly received a sequence of occlusal schemes: BBO followed by CG, or CG followed by BBO. Outcomes were assessed after 30 days of each occlusal scheme. Participants answered a denture satisfaction questionnaire and a kinesiograph instrument recorded mandibular physiologic movements and pattern of maxillary denture movement during chewing. Wilcoxon test and paired sample t-test were used to compare satisfaction levels and kinesiographic data for each occlusal scheme, respectively (a = 0.05). The results showed no differences between occlusal schemes on participants satisfaction and in any of the kinesiographic parameters studied, except for the vertical intrusion of the maxillary complete denture during chewing, which was lower with CG. It can be concluded that the occlusal scheme did not influence on satisfaction and kinesiographic parameters evaluated, as long as volume and resilience of residual edentulous ridges of the participants were normal. Clinical Trial Registration Identifier: NC.T01420536.
Resumo:
Mobile elements are widely present in eukaryotic genomes. They are repeated DNA segments that are able to move from one locus to another within the genome. They are divided into two main categories, depending on their mechanism of transposition, involving RNA (class I) or DNA (class II) molecules. The mariner-like elements are class II transposons. They encode their own transposase, which is necessary and sufficient for transposition in the absence of host factors. They are flanked by a short inverted terminal repeat and a TA dinucleotide target site, which is duplicated upon insertion. The transposase consists of two domains, an N-terminal inverted terminal repeat binding domain and a C-terminal catalytic domain. We identified a transposable element with molecular characteristics of a mariner-like element in Atta sexdens rubropilosa genome. Identification started from a PCR with degenerate primers and queen genomic DNA templates, with which it was possible to amplify a fragment with mariner transposable-element homology. Phylogenetic analysis demonstrated that this element belongs to the mauritiana subfamily of mariner-like elements and it was named Asmar1. We found that Asmar1 is homologous to a transposon described from another ant, Messor bouvieri. The predicted transposase sequence demonstrated that Asmar1 has a truncated transposase ORF. This study is part of a molecular characterization of mobile elements in the Atta spp genome. Our finding of mariner-like elements in all castes of this ant could be useful to help understand the dynamics of mariner-like element distribution in the Hymenoptera.
Resumo:
Objective: To evaluate numerically the facial profile of children with isolated Pierre Robin sequence (PRS) and to compare them with a control group that has no pathologies and exhibits regular and balanced facial growth, with no skeletal alterations. Patients: Eighty-three children aged 5 to 10 years (PRS group, n = 60; control group, n = 23) were selected. Setting: Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo (HRAC-USP). Children from the control group were taken from the program of Interceptive Orthodontics at HRAC-USP. Design: Angular and ratio analyses of the facial profiles in both groups were realized through digital photographs. The PRS group was subdivided into two groups-complete and incomplete-according to the sagittal extension of the cleft palate, to investigate the possible influence of cleft extension on the face. Results: The facial convexity angle and the facial inferior third angle were considerably higher in the PRS groups than in the control group and were not significantly different between PRS groups. Nasolabial angle did not differ between groups. Conclusion: The facial profile was more convex in individuals with PRS than in those with regular facial growth and with no pathology. The mandible was responsible for the convexity of the profile in PRS because of its lack off anterior projection. An important relationship between the extension of the cleft palate and alterations in facial profile in PRS was not observed.