830 resultados para Collaborative learning and applications
Resumo:
This paper presents an up to date review of digital watermarking (WM) from a VLSI designer point of view. The reader is introduced to basic principles and terms in the field of image watermarking. It goes through a brief survey on WM theory, laying out common classification criterions and discussing important design considerations and trade-offs. Elementary WM properties such as robustness, computational complexity and their influence on image quality are discussed. Common attacks and testing benchmarks are also briefly mentioned. It is shown that WM design must take the intended application into account. The difference between software and hardware implementations is explained through the introduction of a general scheme of a WM system and two examples from previous works. A versatile methodology to aid in a reliable and modular design process is suggested. Relating to mixed-signal VLSI design and testing, the proposed methodology allows an efficient development of a CMOS image sensor with WM capabilities.
Resumo:
This study presents a meta-analysis synthesizing the existing research on the effectiveness of workplace coaching. We exclusively explore workplace coaching provided by internal or external coaches and therefore exclude cases of manager-subordinate and peer coaching. We propose a framework of potential outcomes from coaching in organizations, which we examine meta-analytically (k = 17). Our analyses indicated that coaching had positive effects on organizational outcomes overall (δ = 0.36), and on specific forms of outcome criteria (skill-based δ = 0.28; affective δ = 0.51; individual-level results δ = 1.24). We also examined moderation by a number of coaching practice factors (use of multisource feedback; type of coach; coaching format; longevity of coaching). Our analyses of practice moderators indicated a significant moderation of effect size for type of coach (with effects being stronger for internal coaches compared to external coaches) and use of multisource feedback (with the use of multisource feedback resulting in smaller positive effects). We found no moderation of effect size by coaching format (comparing face-to-face, with blended face-to-face and e-coaching) or duration of coaching (number of sessions or longevity of intervention). The effect sizes give support to the potential utility of coaching in organizations. Implications for coaching research and practice are discussed.
Resumo:
Mathematics Subject Classification: 44A15, 33D15, 81Q99
Resumo:
Mathematics Subject Classification: 26A33, 34A60, 34K40, 93B05
Resumo:
Editorial
Resumo:
Кремена В. Стефанова - В тази статия са разрешени някои нелинейни интегрални неравенства, които включват максимума на неизвестната функция на две променливи. Разгледаните неравенства представляват обобщения на класическото неравенство на Гронуол-Белман. Значението на тези интегрални неравенства се определя от широките им приложения в качествените изследвания на частните диференциални уравнения с “максимуми” и е илюстрирано чрез някои директни приложения.
Resumo:
The quantum Jensen-Shannon divergence kernel [1] was recently introduced in the context of unattributed graphs where it was shown to outperform several commonly used alternatives. In this paper, we study the separability properties of this kernel and we propose a way to compute a low-dimensional kernel embedding where the separation of the different classes is enhanced. The idea stems from the observation that the multidimensional scaling embeddings on this kernel show a strong horseshoe shape distribution, a pattern which is known to arise when long range distances are not estimated accurately. Here we propose to use Isomap to embed the graphs using only local distance information onto a new vectorial space with a higher class separability. The experimental evaluation shows the effectiveness of the proposed approach. © 2013 Springer-Verlag.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014
Resumo:
We present some recent trends in the field of digital cultural heritage management and applications including digital cultural data curation, interoperability, open linked data publishing, crowd sourcing, visualization, platforms for digital cultural heritage, and applications. We present some examples from research and development projects of MUSIC/TUC in those areas.
Resumo:
Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to be analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham’s razor non-plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015
Resumo:
2000 Mathematics Subject Classification: Primary 40C99, 46B99.
Resumo:
2000 Mathematics Subject Classification: 35Q55,42B10.