988 resultados para Career changes
Resumo:
The modern fishery for Tilefish (Lopholatilus chamaeleonticeps) developed during the 1970s, offshore of southern New England, in the western North Atlantic Ocean. The population quickly became over exploited, with documented declines in catch rates and changes in demographic traits. In an earlier study, median size at maturity (L50) of males declined from 62.6 to 38.6 cm fork length (FL) and median age at maturity (A50) of males declined from 7.1 to 4.6 years between 1978 and 1982. As part of a cooperative research effort to improve the data-limited Tilefish assessment, we updated maturity parameter estimates through the use of an otolith aging method and macroscopic and microscopic evaluations of gonads. The vital rates for this species have continued to change, particularly for males. By 2008, male L50 and A50 had largely rebounded, to 54.1 cm FL and 5.9 years. Changes in female reproductive schedules were less variable among years, but the smallest L50 and youngest A50 were recorded in 2008. Tilefish are dimorphic, where the largest fish are male, and male spawning success is postulated to be socially mediated. These traits may explain the initial rapid decline and the subsequent rebound in male L50 and A50 and less dramatic effects on females. Other factors that likely contribute to the dynamics of maturity parameter estimates are the relatively short period of overfishing and the amount of time since efforts to rebuild this fishery began, as measured in numbers of generations. This study also confirms the gonochoristic sexual pattern of the northern stock, and it reveals evidence of age truncation and relatively high proportions of immature Tilefish in the recent catch.
Resumo:
A decision is a commitment to a proposition or plan of action based on evidence and the expected costs and benefits associated with the outcome. Progress in a variety of fields has led to a quantitative understanding of the mechanisms that evaluate evidence and reach a decision. Several formalisms propose that a representation of noisy evidence is evaluated against a criterion to produce a decision. Without additional evidence, however, these formalisms fail to explain why a decision-maker would change their mind. Here we extend a model, developed to account for both the timing and the accuracy of the initial decision, to explain subsequent changes of mind. Subjects made decisions about a noisy visual stimulus, which they indicated by moving a handle. Although they received no additional information after initiating their movement, their hand trajectories betrayed a change of mind in some trials. We propose that noisy evidence is accumulated over time until it reaches a criterion level, or bound, which determines the initial decision, and that the brain exploits information that is in the processing pipeline when the initial decision is made to subsequently either reverse or reaffirm the initial decision. The model explains both the frequency of changes of mind as well as their dependence on both task difficulty and whether the initial decision was accurate or erroneous. The theoretical and experimental findings advance the understanding of decision-making to the highly flexible and cognitive acts of vacillation and self-correction.
Resumo:
Studies by Enfield and Allen (1980), McLain et al (1985), and others have shown that anomalously warm years in the northern coastal California Current correspond to El Niño conditions in the equatorial Pacific Ocean. Ocean model studies suggest a mechanical link between the northern coastal California Current and the equatorial ocean through long waves that propagate cyclonically along the ocean boundary (McCreary 1976; Clarke 1983; Shriver et al 1991). However, distinct observational evidence of such an oceanic connection is not extensive. Much of the supposed El Niño variation in temperature and sea level data from the coastal California Current region can be associated with the effects of anomalously intense north Pacific atmospheric cyclogenesis, which is frequently augmented during El Niño years (Wallace and Gutzler 1981; Simpson 1983; Emery and Hamilton 1984). This study uses time series of ocean temperature data to distinguish between locally forced effects, initiated by north Pacific atmospheric changes, and remotely forced effects, initiated by equatorial Pacific atmospheric changes related to El Niño events.
Resumo:
The effect of decreasing frost frequency on desert vegetation was documented in Grand Canyon by replication of historical photographs. Although views by numerous photographers of Grand Canyon have been examined, 400 Robert Brewster Stanton and Franklin A. Nims views taken in the winter of 1889-1890 provide the best information on recent plant distribution. In Grand Canyon, where grazing is limited by the rugged topography, vegetation dynamics are controlled by climate and by demographic processes such as seed productivity, recruitment, longevity and mortality. The replicated photographs show distribution and abundance of several species were limited by severe frost before 1889. Two of these, brittlebush (Encelia farinosa) and barrel cactus (Ferocactus cylindraceus), have clearly expanded their ranges up-canyon and have increased their densities at sites where they were present in 1890. In 1890, brittlebush was present in warm microhabitats that provided refugia from frost damage. Views showing desert vegetation in 1923 indicate that Encelia expanded rapidly to near its current distribution between 1890 and 1923, whereas the expansion of Ferocactus occurred more slowly. The higher frequency of frost was probably related to an anomalous increase in winter storms between 1878 (and possibly 1862) and 1891 in the southwestern United States.
Resumo:
We examined the diets and habitat shift of juvenile red snapper (Lutjanus campechanus) in the northeast Gulf of Mexico. Fish were collected from open sand-mud habitat (little to no relief), and artificial reef habitat (1-m3 concrete or PVC blocks), from June 1993 through December 1994. In 1994, fish settled over open habitat from June to September, as shown by trawl collections, then began shifting to reef habitat — a shift that was almost completed by December as observed by SCUBA visual surveys. Stomachs were examined from 1639 red snapper that ranged in size from 18.0 to 280.0 mm SL. Of these, 850 fish had empty stomachs, and 346 fish from open habitat and 443 fish from reef habitat contained prey. Prey were identified to the lowest possible taxon and quantified by volumetric measurement. Specific volume of particular prey taxa were calculated by dividing prey volume by individual fish weight. Red snapper shifted diets with increasing size. Small red snapper (<60 mm SL) fed mostly on chaetognaths, copepods, shrimp, and squid. Large red snapper (60–280 mm SL) shifted feeding to fish prey, greater amounts of squid and crabs, and continued feeding on shrimp. We compared red snapper diets for overlapping size classes (70–160 mm SL) of fish that were collected from both habitats (Bray-Curtis dissimilarity index and multidimensional scaling analysis). Red snapper diets separated by habitat type rather than fish size for the size ranges that overlapped habitats. These diet shifts were attributed to feeding more on reef prey than on open-water prey. Thus, the shift in habitat shown by juvenile red snapper was reflected in their diet and suggested differential habitat values based not just on predation refuge but food resources as well.
Resumo:
The diet of Pacific cod (Gadus macrocephalus) in the area of Pavlof Bay, Alaska, was studied in the early 1980s by Albers and Anderson (1985). They found that the dominant prey species were forage species like pandalid shrimp, capelin (Mallotus villosus), and walleye pollock (Theragra chalcogramma). The shrimp fishery in Pavlof Bay began in 1968 and closed in 1980 because of low shrimp abundance (Ruccio and Worton1). Survey data indicate that, during the period between 1972 and 1997, the abundance of forage species such as pandalid shrimp and capelin declined and higher trophic-level groundfish such as Pacific cod increased. There is a general recognition that a long-term ocean climate shift in the Gulf of Alaska has been partially responsible for the observed reorganization of the community structure (Anderson and Piatt, 1999).