952 resultados para CUTICULAR HYDROCARBONS
Resumo:
No presente trabalho os parâmetros de desempenho (validação intralaboratorial) da metodologia de determinação de TPH (Total Petroleum Hydrocarbons) foram determinados por detecção na região do infravermelho com o equipamento da Infracal TOG/TPH, visando aplicação em amostras de areia contaminadas com petróleo. Os ensaios foram realizados utilizando Óleo Marine Fuel 380, com densidade igual 0,987 g cm-3 e viscosidade de 5313 cP a 20°C. Este óleo foi fornecido pelo Centro de Pesquisa da Petrobrás (CENPES/PETROBRÁS/RJ), sendo o mesmo óleo derramado no acidente ocorrido em janeiro de 2000, na Baia de Guanabara, RJ, quando 1.300 m3 vazaram do duto que interliga a REDUC (Refinaria Duque de Caxias, RJ) ao terminal da Ilha dÁgua/RJ, atingindo praias. Os resultados da validação indicaram que o desempenho da metodologia foi favorável à aplicação que se destina. Entre os parâmetros metrológicos obtidos neste trabalho, o limite de detecção do método foi de 4,06 mg L-1, consideravelmente inferior à faixa de concentração normalmente obtida para amostras em tais situações.
Resumo:
A high-speed and high-voltage solid-rotor induction machine provides beneficial features for natural gas compressor technology. The mechanical robustness of the machine enables its use in an integrated motor-compressor. The technology uses a centrifugal compressor, which is mounted on the same shaft with the high-speed electrical machine driving it. No gearbox is needed as the speed is determined by the frequency converter. The cooling is provided by the process gas, which flows through the motor and is capable of transferring the heat away from the motor. The technology has been used in the compressors in the natural gas supply chain in the central Europe. New areas of application include natural gas compressors working at the wellheads of the subsea gas reservoir. A key challenge for the design of such a motor is the resistance of the stator insulation to the raw natural gas from the well. The gas contains water and heavy hydrocarbon compounds and it is far harsher than the sales gas in the natural gas supply network. The objective of this doctoral thesis is to discuss the resistance of the insulation to the raw natural gas and the phenomena degrading the insulation. The presence of partial discharges is analyzed in this doctoral dissertation. The breakdown voltage of the gas is measured as a function of pressure and gap distance. The partial discharge activity is measured on small samples representing the windings of the machine. The electrical field behavior is also modeled by finite element methods. Based on the measurements it has been concluded that the discharges are expected to disappear at gas pressures above 4 – 5 bar. The disappearance of discharges is caused by the breakdown strength of the gas, which increases as the pressure increases. Based on the finite element analysis, the physical length of a discharge seen in the PD measurements at atmospheric pressure was approximated to be 40 – 120 m. The chemical aging of the insulation when exposed to raw natural gas is discussed based on a vast set of experimental tests with the gas mixture representing the real gas mixture at the wellhead. The mixture was created by mixing dry hydrocarbon gas, heavy hydrocarbon compounds, monoethylene glycol, and water. The mixture was chosen to be more aggressive by increasing the amount of liquid substances. Furthermore, the temperature and pressure were increased, which resulted in accelerated test conditions. The time required to detect severe degradation was thus decreased. The test program included a comparison of materials, an analysis of the e ects of di erent compounds in the gas mixture, namely water and heavy hydrocarbons, on the aging, an analysis of the e ects of temperature and exposure duration, and also an analysis on the e ect of sudden pressure changes on the degradation of the insulating materials. It was found in the tests that an insulation consisting of mica, glass, and epoxy resin can tolerate the raw natural gas, but it experiences some degradation. The key material in the composite insulation is the resin, which largely defines the performance of the insulation system. The degradation of the insulation is mostly determined by the amount of gas mixture di used into it. The di usion was seen to follow Fick’s second law, but the coe cients were not accurately defined. The di usion was not sensitive to temperature, but it was dependent upon the thermodynamic state of the gas mixture, in other words, the amounts of liquid components in the gas. The weight increase observed was mostly related to heavy hydrocarbon compounds, which act as plasticizers in the epoxy resin. The di usion of these compounds is determined by the crosslink density of the resin. Water causes slight changes in the chemical structure, but these changes do not significantly contribute to the aging phenomena. Sudden changes in pressure can lead to severe damages in the insulation, because the motion of the di used gas is able to create internal cracks in the insulation. Therefore, the di usion only reduces the mechanical strength of the insulation, but the ultimate breakdown can potentially be caused by a sudden drop in the pressure of the process gas.
Resumo:
This study aims to evaluate the prognostic value of microscopic parameters of asymptomatic leaves of Clusia hilariana Schltdl. subjected to particulate deposition of iron (2.14 mg cm-2 day-1) for 45 consecutive days. Samples of young and expanded leaves without symptoms were collected and subjected to light and scanning electron microscopy techniques. The height of the epidermal cells on both surfaces of the leaf and the thickness of the hypodermis, the chlorophyll parenchyma, and the leaf blade were measured. Micromorphological injury occurred in the abaxial surface of young leaves and on both surfaces of expanded leaves. Erosion of the epicuticular wax and cuticle rupture were frequent on the adaxial surface, while on the abaxial surface of both leaves there was a loss of sinuosity on the anticlinal wall of the epidermal cells, stomatal deformity and obstruction. Micromorphometric alterations were seen in all leaf tissues except in the height of epidermic cells, probably due to the thick cuticle and prominent cuticular flanges. The highest difference in thickness of the leaf blade was seen in young leaves of plants subjected to SPMFe, indicating greater sensibility to particulate iron in comparison to the expanded leaves. The micromorphological and micromorphometric alterations in the leaf blade of Clusia hilariana Schltdl. showed the prognostic potential of these tools on the evaluation of impacts caused by the deposition of particulate matter, especially in the 'Restinga' natural vegetation, where the exposure is increasing due to the presence of iron ore industry in their surroundings.
Resumo:
It is known already from 1970´s that laser beam is suitable for processing paper materials. In this thesis, term paper materials mean all wood-fibre based materials, like dried pulp, copy paper, newspaper, cardboard, corrugated board, tissue paper etc. Accordingly, laser processing in this thesis means all laser treatments resulting material removal, like cutting, partial cutting, marking, creasing, perforation etc. that can be used to process paper materials. Laser technology provides many advantages for processing of paper materials: non-contact method, freedom of processing geometry, reliable technology for non-stop production etc. Especially packaging industry is very promising area for laser processing applications. However, there are only few industrial laser processing applications worldwide even in beginning of 2010´s. One reason for small-scale use of lasers in paper material manufacturing is that there is a shortage of published research and scientific articles. Another problem, restraining the use of laser for processing of paper materials, is colouration of paper material i.e. the yellowish and/or greyish colour of cut edge appearing during cutting or after cutting. These are the main reasons for selecting the topic of this thesis to concern characterization of interaction of laser beam and paper materials. This study was carried out in Laboratory of Laser Processing at Lappeenranta University of Technology (Finland). Laser equipment used in this study was TRUMPF TLF 2700 carbon dioxide laser that produces a beam with wavelength of 10.6 μm with power range of 190-2500 W (laser power on work piece). Study of laser beam and paper material interaction was carried out by treating dried kraft pulp (grammage of 67 g m-2) with different laser power levels, focal plane postion settings and interaction times. Interaction between laser beam and dried kraft pulp was detected with different monitoring devices, i.e. spectrometer, pyrometer and active illumination imaging system. This way it was possible to create an input and output parameter diagram and to study the effects of input and output parameters in this thesis. When interaction phenomena are understood also process development can be carried out and even new innovations developed. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. It was concluded in this thesis that interaction of laser beam and paper material has two mechanisms that are dependent on focal plane position range. Assumed interaction mechanism B appears in range of average focal plane position of 3.4 mm and 2.4 mm and assumed interaction mechanism A in range of average focal plane position of 0.4 mm and -0.6 mm both in used experimental set up. Focal plane position 1.4 mm represents midzone of these two mechanisms. Holes during laser beam and paper material interaction are formed gradually: first small hole is formed to interaction area in the centre of laser beam cross-section and after that, as function of interaction time, hole expands, until interaction between laser beam and dried kraft pulp is ended. By the image analysis it can be seen that in beginning of laser beam and dried kraft pulp material interaction small holes off very good quality are formed. It is obvious that black colour and heat affected zone appear as function of interaction time. This reveals that there still are different interaction phases within interaction mechanisms A and B. These interaction phases appear as function of time and also as function of peak intensity of laser beam. Limit peak intensity is the value that divides interaction mechanism A and B from one-phase interaction into dual-phase interaction. So all peak intensity values under limit peak intensity belong to MAOM (interaction mechanism A one-phase mode) or to MBOM (interaction mechanism B onephase mode) and values over that belong to MADM (interaction mechanism A dual-phase mode) or to MBDM (interaction mechanism B dual-phase mode). Decomposition process of cellulose is evolution of hydrocarbons when temperature is between 380- 500°C. This means that long cellulose molecule is split into smaller volatile hydrocarbons in this temperature range. As temperature increases, decomposition process of cellulose molecule changes. In range of 700-900°C, cellulose molecule is mainly decomposed into H2 gas; this is why this range is called evolution of hydrogen. Interaction in this range starts (as in range of MAOM and MBOM), when a small good quality hole is formed. This is due to “direct evaporation” of pulp via decomposition process of evolution of hydrogen. And this can be seen can be seen in spectrometer as high intensity peak of yellow light (in range of 588-589 nm) which refers to temperature of ~1750ºC. Pyrometer does not detect this high intensity peak since it is not able to detect physical phase change from solid kraft pulp to gaseous compounds. As interaction time between laser beam and dried kraft pulp continues, hypothesis is that three auto ignition processes occurs. Auto ignition of substance is the lowest temperature in which it will spontaneously ignite in a normal atmosphere without an external source of ignition, such as a flame or spark. Three auto ignition processes appears in range of MADM and MBDM, namely: 1. temperature of auto ignition of hydrogen atom (H2) is 500ºC, 2. temperature of auto ignition of carbon monoxide molecule (CO) is 609ºC and 3. temperature of auto ignition of carbon atom (C) is 700ºC. These three auto ignition processes leads to formation of plasma plume which has strong emission of radiation in range of visible light. Formation of this plasma plume can be seen as increase of intensity in wavelength range of ~475-652 nm. Pyrometer shows maximum temperature just after this ignition. This plasma plume is assumed to scatter laser beam so that it interacts with larger area of dried kraft pulp than what is actual area of beam cross-section. This assumed scattering reduces also peak intensity. So result shows that assumably scattered light with low peak intensity is interacting with large area of hole edges and due to low peak intensity this interaction happens in low temperature. So interaction between laser beam and dried kraft pulp turns from evolution of hydrogen to evolution of hydrocarbons. This leads to black colour of hole edges.
Resumo:
Talousvesi sisältää paljon erilaisia yhdisteitä, joista osa on ihmiselle haitallisia, tällaisia yhdisteitä ovat muun muassa klooratut hiilivedyt. Haitallisten yhdisteiden määrän minimoimiseksi talousvedessä talousveden vieraille aineille on määrätty asetuksissa enimmäispitoisuuksia sekä – tiheyksiä. Näitä laatuvaatimuksia sekä – suosituksia noudattamalla talousvesi on käyttökelpoista. Talousvedellä ei tällöin ole haitallisia terveysvaikutuksia eikä se vahingoita vesilinjastoja. Kirjallisuusosassa selvitetään pienten yksiköiden talousveteen liittyvän sosiaali- ja terveysministeriön asetuksen sisältöä. Mitä asetus pitää sisällään, keitä asetus koskee ja miksi asetukseen kirjatut yhdisteet ja aineet ovat ihmiselle haitallisia sekä mitä terveysvaikutuksia kyseisillä aineilla on. Kokeellisessa osiossa analysoitiin kolmesta näytteestä osa sosiaali- ja terveysministeriön asettamista vaatimuksista. Pääsääntöisesti mitattiin epäorgaanisia aineita sekä ioneja. Mittaukset suoritettiin ionikromatografilla, liekki-atomiabsorptiospektrometrillä, TOC-analysaattorilla, COD-putkilla, pH-, johtokyky- sekä sameusmittarilla.
Resumo:
Polymeric materials that conduct electricity are highly interesting for fundamental studies and beneficial for modern applications in e.g. solar cells, organic field effect transistors (OFETs) as well as in chemical and bio‐sensing. Therefore, it is important to characterize this class of materials with a wide variety of methods. This work summarizes the use of electrochemistry also in combination with spectroscopic methods in synthesis and characterization of electrically conducting polymers and other π‐conjugated systems. The materials studied in this work are intended for organic electronic devices and chemical sensors. Additionally, an important part of the presented work, concerns rational approaches to the development of water‐based inks containing conducting particles. Electrochemical synthesis and electroactivity of conducting polymers can be greatly enhanced in room temperature ionic liquids (RTILs) in comparison to conventional electrolytes. Therefore, poly(para‐phyenylene) (PPP) was electrochemically synthesized in the two representative RTILs: bmimPF6 and bmiTf2N (imidazolium and pyrrolidinium‐based salts, respectively). It was found that the electrochemical synthesis of PPP was significantly enhanced in bmimPF6. Additionally, the results from doping studies of PPP films indicate improved electroactivity in bmimPF6 during oxidation (p‐doping) and in bmiTf2N in the case of reduction (n‐doping). These findings were supported by in situ infrared spectroscopy studies. Conducting poly(benzimidazobenzophenanthroline) (BBL) is a material which can provide relatively high field‐effect mobility of charge carriers in OFET devices. The main disadvantage of this n‐type semiconductor is its limited processability. Therefore in this work BBL was functionalized with poly(ethylene oxide) PEO, varying the length of side chains enabling water dispersions of the studied polymer. It was found that functionalization did not distract the electrochemical activity of the BBL backbone while the processability was improved significantly in comparison to conventional BBL. Another objective was to study highly processable poly(3,4‐ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) water‐based inks for controlled patterning scaled‐down to nearly a nanodomain with the intention to fabricate various chemical sensors. Developed PEDOT:PSS inks greatly improved printing of nanoarrays and with further modification with quaternary ammonium cations enabled fabrication of PEDOT:PSS‐based chemical sensors for lead (II) ions with enhanced adhesion and stability in aqueous environments. This opens new possibilities for development of PEDOT:PSS films that can be used in bio‐related applications. Polycyclic aromatic hydrocarbons (PAHs) are a broad group of π‐conjugated materials consisting of aromatic rings in the range from naphthalene to even hundred rings in one molecule. The research on this type of materials is intriguing, due to their interesting optical properties and resemblance of graphene. The objective was to use electrochemical synthesis to yield relatively large PAHs and fabricate electroactive films that could be used as template material in chemical sensors. Spectroscopic, electrochemical and electrical investigations evidence formation of highly stable films with fast redox response, consisting of molecules with 40 to 60 carbon atoms. Additionally, this approach in synthesis, starting from relatively small PAH molecules was successfully used in chemical sensor for lead (II).
Resumo:
Optimization of high strength and toughness combination on the effect of weldability is very vital to be considered in offshore oil and gas industries. Having a balanced and improved high strength and toughness is very much recommended in offshore structures for an effective production and viable exploration of hydrocarbons. This thesis aims to investigate the possibilities to improve the toughness of high strength steel. High carbon contents induce hardness and needs to be reduced for increasing toughness. The rare combination of high strength with high toughness possibilities was examined by determining the following toughening mechanism of: Heat treatment and optimal microstructure, Thermomechanical processing, Effect of welding parameters on toughness and weldability of steel. The implementation of weldability of steels to attain high toughness for high strength in offshore structures is mostly in shipbuilding, offshore platforms, and pipelines for high operating pressures. As a result, the toughening mechanisms suggested have benefits to the aims of the effect of high strength to high toughness of steel for efficiency, production and cost reduction.
Resumo:
A vegetação é a fonte de aproximadamente 90% de todos os compostos orgânicos voláteis na atmosfera global. Alguns hidrocarbonetos oxigenados emitidos por plantas reagem com radicais livres, tais como nitrato e hidroxila, e ozônio em taxas comparáveis com aquelas dos compostos antropogênicos mais reativos e podem contribuir para a formação de ozônio em áreas urbanas. Apesar do papel importante dos hidrocarbonetos naturais na formação fotoquímica dos oxidantes, pouco se sabe sobre as espécies químicas dos compostos orgânicos voláteis emitidos por plantas. Nesse trabalho, foi estudada a emissão de compostos orgânicos voláteis por Ficus benjamina, espécie comumente encontrada na região da cidade de São Paulo. Os gases emitidos pelas folhas da F. benjamina foram coletados em sistemas fechados e vários compostos orgânicos voláteis oxigenados, tais como ácidos orgânicos (ácido fórmico e ácido acético), aldeídos (formaldeído, acetaldeído e hexanal) e álcoois (mentol, 1- butanol, 1-pentanol, 2-penten-1-ol, 4-penten-2-ol e linalool), foram identificados através de técnicas cromatográficas.
Resumo:
The decreasing fossil fuel resources combined with an increasing world energy demand has raised an interest in renewable energy sources. The alternatives can be solar, wind and geothermal energies, but only biomass can be a substitute for the carbon–based feedstock, which is suitable for the production of transportation fuels and chemicals. However, a high oxygen content of the biomass creates challenges for the future chemical industry, forcing the development of new processes which allow a complete or selective oxygen removal without any significant carbon loss. Therefore, understanding and optimization of biomass deoxygenation processes are crucial for the future bio–based chemical industry. In this work, deoxygenation of fatty acids and their derivatives was studied over Pd/C and TiO2 supported noble metal catalysts (Pt, Pt–Re, Re and Ru) to obtain future fuel components. The 5 % Pd/C catalyst was investigated in semibatch and fixed bed reactors at 300 °C and 1.7–2 MPa of inert and hydrogen–containing atmospheres. Based on extensive kinetic studies, plausible reaction mechanisms and pathways were proposed. The influence of the unsaturation in the deoxygenation of model compounds and industrial feedstock – tall oil fatty acids – over a Pd/C catalyst was demonstrated. The optimization of the reaction conditions suppressed the formation of by–products, hence high yields and selectivities towards linear hydrocarbons and catalyst stability were achieved. Experiments in a fixed bed reactor filled with a 2 % Pd/C catalyst were performed with stearic acid as a model compound at different hydrogen–containing gas atmospheres to understand the catalyst stability under various conditions. Moreover, prolonged experiments were carried out with concentrated model compounds to reveal the catalyst deactivation. New materials were proposed for the selective deoxygenation process at lower temperatures (~200 °C) with a tunable selectivity to hydrodeoxygenation by using 4 % Pt/TiO2 or decarboxylation/decarbonylation over 4 % Ru/TiO2 catalysts. A new method for selective hydrogenation of fatty acids to fatty alcohols was demonstrated with a 4 % Re/TiO2 catalyst. A reaction pathway and mechanism for TiO2 supported metal catalysts was proposed and an optimization of the process conditions led to an increase in the formation of the desired products.
Resumo:
Gasification of biomass is an efficient method process to produce liquid fuels, heat and electricity. It is interesting especially for the Nordic countries, where raw material for the processes is readily available. The thermal reactions of light hydrocarbons are a major challenge for industrial applications. At elevated temperatures, light hydrocarbons react spontaneously to form higher molecular weight compounds. In this thesis, this phenomenon was studied by literature survey, experimental work and modeling effort. The literature survey revealed that the change in tar composition is likely caused by the kinetic entropy. The role of the surface material is deemed to be an important factor in the reactivity of the system. The experimental results were in accordance with previous publications on the subject. The novelty of the experimental work lies in the used time interval for measurements combined with an industrially relevant temperature interval. The aspects which are covered in the modeling include screening of possible numerical approaches, testing of optimization methods and kinetic modelling. No significant numerical issues were observed, so the used calculation routines are adequate for the task. Evolutionary algorithms gave a better performance combined with better fit than the conventional iterative methods such as Simplex and Levenberg-Marquardt methods. Three models were fitted on experimental data. The LLNL model was used as a reference model to which two other models were compared. A compact model which included all the observed species was developed. The parameter estimation performed on that model gave slightly impaired fit to experimental data than LLNL model, but the difference was barely significant. The third tested model concentrated on the decomposition of hydrocarbons and included a theoretical description of the formation of carbon layer on the reactor walls. The fit to experimental data was extremely good. Based on the simulation results and literature findings, it is likely that the surface coverage of carbonaceous deposits is a major factor in thermal reactions.
Resumo:
In this thesis, stepwise titration with hydrochloric acid was used to obtain chemical reactivities and dissolution rates of ground limestones and dolostones of varying geological backgrounds (sedimentary, metamorphic or magmatic). Two different ways of conducting the calculations were used: 1) a first order mathematical model was used to calculate extrapolated initial reactivities (and dissolution rates) at pH 4, and 2) a second order mathematical model was used to acquire integrated mean specific chemical reaction constants (and dissolution rates) at pH 5. The calculations of the reactivities and dissolution rates were based on rate of change of pH and particle size distributions of the sample powders obtained by laser diffraction. The initial dissolution rates at pH 4 were repeatedly higher than previously reported literature values, whereas the dissolution rates at pH 5 were consistent with former observations. Reactivities and dissolution rates varied substantially for dolostones, whereas for limestones and calcareous rocks, the variation can be primarily explained by relatively large sample standard deviations. A list of the dolostone samples in a decreasing order of initial reactivity at pH 4 is: 1) metamorphic dolostones with calcite/dolomite ratio higher than about 6% 2) sedimentary dolostones without calcite 3) metamorphic dolostones with calcite/dolomite ratio lower than about 6% The reactivities and dissolution rates were accompanied by a wide range of experimental techniques to characterise the samples, to reveal how different rocks changed during the dissolution process, and to find out which factors had an influence on their chemical reactivities. An emphasis was put on chemical and morphological changes taking place at the surfaces of the particles via X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Supporting chemical information was obtained with X-Ray Fluorescence (XRF) measurements of the samples, and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) measurements of the solutions used in the reactivity experiments. Information on mineral (modal) compositions and their occurrence was provided by X-Ray Diffraction (XRD), Energy Dispersive X-ray analysis (EDX) and studying thin sections with a petrographic microscope. BET (Brunauer, Emmet, Teller) surface areas were determined from nitrogen physisorption data. Factors increasing chemical reactivity of dolostones and calcareous rocks were found to be sedimentary origin, higher calcite concentration and smaller quartz concentration. Also, it is assumed that finer grain size and larger BET surface areas increase the reactivity although no certain correlation was found in this thesis. Atomic concentrations did not correlate with the reactivities. Sedimentary dolostones, unlike metamorphic ones, were found to have porous surface structures after dissolution. In addition, conventional (XPS) and synchrotron based (HRXPS) X-ray Photoelectron Spectroscopy were used to study bonding environments on calcite and dolomite surfaces. Both samples are insulators, which is why neutralisation measures such as electron flood gun and a conductive mask were used. Surface core level shifts of 0.7 ± 0.1 eV for Ca 2p spectrum of calcite and 0.75 ± 0.05 eV for Mg 2p and Ca 3s spectra of dolomite were obtained. Some satellite features of Ca 2p, C 1s and O 1s spectra have been suggested to be bulk plasmons. The origin of carbide bonds was suggested to be beam assisted interaction with hydrocarbons found on the surface. The results presented in this thesis are of particular importance for choosing raw materials for wet Flue Gas Desulphurisation (FGD) and construction industry. Wet FGD benefits from high reactivity, whereas construction industry can take advantage of slow reactivity of carbonate rocks often used in the facades of fine buildings. Information on chemical bonding environments may help to create more accurate models for water-rock interactions of carbonates.
Resumo:
Greenhouse gases emitted from energy production and transportation are dramatically changing the climate of Planet Earth. As a consequence, global warming is affecting the living conditions of numerous plant and animal species, including ours. Thus the development of sustainable and renewable liquid fuels is an essential global challenge in order to combat the climate change. In the past decades many technologies have been developed as alternatives to currently used petroleum fuels, such as bioethanol and biodiesel. However, even with gradually increasing production, the market penetration of these first generation biofuels is still relatively small compared to fossil fuels. Researchers have long ago realized that there is a need for advanced biofuels with improved physical and chemical properties compared to bioethanol and with biomass raw materials not competing with food production. Several target molecules have been identified as potential fuel candidates, such as alkanes, fatty acids, long carbon‐chain alcohols and isoprenoids. The current study focuses on the biosynthesis of butanol and propane as possible biofuels. The scope of this research was to investigate novel heterologous metabolic pathways and to identify bottlenecks for alcohol and alkane generation using Escherichia coli as a model host microorganism. The first theme of the work studied the pathways generating butyraldehyde, the common denominator for butanol and propane biosynthesis. Two ways of generating butyraldehyde were described, one via the bacterial fatty acid elongation machinery and the other via partial overexpression of the acetone‐butanol‐ethanol fermentation pathway found in Clostridium acetobutylicum. The second theme of the experimental work studied the reduction of butyraldehyde to butanol catalysed by various bacterial aldehyde‐reductase enzymes, whereas the final part of the work investigated the in vivo kinetics of the cyanobacterial aldehyde deformylating oxygenase (ADO) for the generation of hydrocarbons. The results showed that the novel butanol pathway, based on fatty acid biosynthesis consisting of an acyl‐ACP thioesterase and a carboxylic acid reductase, is tolerant to oxygen, thus being an efficient alternative to the previous Clostridial pathways. It was also shown that butanol can be produced from acetyl‐CoA using acetoacetyl CoA synthase (NphT7) or acetyl‐CoA acetyltransferase (AtoB) enzymes. The study also demonstrated, for the first time, that bacterial biosynthesis of propane is possible. The efficiency of the system is clearly limited by the poor kinetic properties of the ADO enzyme, and for proper function in vivo, the catalytic machinery requires a coupled electron relay system.
Resumo:
CYP1A1 and GSTP1 polymorphisms have been associated with a higher risk to develop several cancers, including oral squamous cell carcinoma (OSCC), which is closely related to tobacco and alcohol consumption. Both genes code for enzymes that have an important role in activating or detoxifying carcinogenic elements found in tobacco and other compounds, and polymorphic variants of these genes may result in alterations of the enzymatic activity. The CYP1A1 gene codes for the enzyme aryl hydrocarbon hydroxylase, which is responsible for the metabolism of polycyclic aromatic hydrocarbons. The investigated polymorphism, Ile/Val, seems to increase the activity of the enzyme in homozygous individuals, leading to an accumulation of carcinogens. The Ile/Val polymorphism occurs because of an A->G transition at exon 7, resulting in the CYP1A1*2B allele. The GSTP1*B variant shows an A->G transition at exon 5, changing the amino acid Ile to Val, with a reduced catalytic activity of the enzyme. Due to this reduction, the carriers of mutant alleles lost the capability to metabolize carcinogens, which could be responsible for a higher susceptibility to cancer. We conducted a case-control study in a group of 72 cases with newly diagnosed OSCC and 60 healthy controls matched for age, gender, smoking habits, and ethnicity. We used PCR methods to identify the allelic variants CYP1A1*2B and GSTP1*B. The data obtained showed no statistically significant association of allelic or genotypic variants of CYP1A1*2B (OR = 1.06; 95% CI = 0.49-2.29) and GSTP1*B (OR = 1.40; 95% CI = 0.70-2.79) with OSCC.
Resumo:
Lipid transport in arthropods is achieved by highly specialized lipoproteins, which resemble those described in vertebrate blood. Here we describe purification and characterization of the lipid-apolipoprotein complex, lipophorin (Lp), from adults and larvae of the cowpea weevil Callosobruchus maculatus. We also describe the Lp-mediated lipid transfer to developing oocytes. Lps were isolated from homogenates of C. maculatus larvae and adults by potassio bromide gradient and characterized with respect to physicochemical properties and lipid content. The weevil Lp (465 kDa) and larval Lp (585 kDa), with hydrated densities of 1.22 and 1.14 g/mL, contained 34 and 56% lipids and 9 and 7% carbohydrates, respectively. In both Lps, mannose was the predominant monosaccharide detected by paper chromatography. SDS-PAGE revealed two apolipoproteins in each Lp with molecular masses of 225 kDa (apolipoprotein-I) and 79 kDa (apolipoprotein-II). The lipids were extracted and analyzed by thin-layer chromatography. The major phospholipids found were phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine in adult Lp, and phosphatidylcholine, phosphatidylethanolamine and sphingomyelin in larval Lp. Hydrocarbons, fatty acids and triacylglycerol were the major neutral lipids found in both Lps. Lps labeled in the protein moiety with radioactive iodine (125I-iodine) or in the lipid moiety with fluorescent lipids revealed direct evidence of endocytic uptake of Lps in live oocytes of C. maculatus.
Resumo:
Polychlorinated dibenzo-p-dioxins (PCDDs) and related halogenated aromatic hydrocarbons (e.g., PCDFs), often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR). Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region), previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age). We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA.