927 resultados para CONJUGATED POLYMERS
Resumo:
We develop a deterministic mathematical model to describe the way in which polymers bind to DNA by considering the dynamics of the gap distribution that forms when polymers bind to a DNA plasmid. In so doing, we generalise existing theory to account for overlaps and binding cooperativity whereby the polymer binding rate depends on the size of the overlap The proposed mean-field models are then solved using a combination of numerical and asymptotic methods. We find that overlaps lead to higher coverage and hence higher charge neutralisations, results which are more in line with recent experimental observations. Our work has applications to gene therapy where polymers are used to neutralise the negative charges of the DNA phosphate backbone, allowing condensation prior to delivery into the nucleus of an abnormal cell.
Resumo:
We model the way in which polymers bind to DNA and neutralise its charged backbone by analysing the dynamics of the distribution of gaps along the DNA. We generalise existing theory for irreversible binding to construct new deterministic models which include polymer removal, movement along the DNA and allow for binding with overlaps. We show that reversible binding alters the capacity of the DNA for polymers by allowing the rearrangement of polymer positions over a longer timescale than when binding is irreversible. When the polymers do not overlap, allowing reversible binding increases the number of polymers adhered and hence the charge that the DNA can accommodate; in contrast, when overlaps occur, reversible binding reduces the amount of charge neutralised by the polymers.
Resumo:
Purpose.: 5-Methoxy-carbonylamino-N-acetyltryptamine (5-MCA-NAT, a melatonin receptor agonist) produces a clear intraocular pressure (IOP) reduction in New Zealand White rabbits and glaucomatous monkeys. The goal of this study was to evaluate whether the hypotensive effect of 5-MCA-NAT was enhanced by the presence of cellulose derivatives, some of them with bioadhesive properties, as well as to determine whether these formulations were well tolerated by the ocular surface. Methods.: Formulations were prepared with propylene glycol (0.275%), carboxymethyl cellulose (CMC, 0.5% and 1.0%) of low and medium viscosity and hydroxypropylmethyl cellulose (0.3%). Quantification of 5-MCA-NAT (100 μM) was assessed by HPLC. In vitro tolerance was evaluated by the MTT method in human corneal-limbal epithelial cells and normal human conjunctival cells. In vivo tolerance was analyzed by biomicroscopy and specular microscopy in rabbit eyes. The ocular hypotensive effect was evaluated measuring IOP for 8 hours in rabbit eyes. Results.: All the formulations demonstrated good in vitro and in vivo tolerance. 5-MCA-NAT in CMC medium viscosity 0.5% was the most effective at reducing IOP (maximum IOP reduction, 30.27%), and its effect lasted approximately 7 hours. Conclusions.: The hypotensive effect of 5-MCA-NAT was increased by using bioadhesive polymers in formulations that are suitable for the ocular surface and also protective of the eye in long-term therapies. The use of 5-MCA-NAT combined with bioadhesive polymers is a good strategy in the treatment of ocular hypertension and glaucoma.
Resumo:
Deep-fat frying is susceptible to induce the formation of undesirable products as lipid oxidation products and acrylamide in fried foods. Plantain chips produced by small-scale producers are sold to consumers without any control. The objective of this study was to evaluate the quality of plantain chips from local producers in relation to production process parameters and oils, and to identify the limiting factors for the production of acrylamide in plantain chips. Samples of frying oils and plantain chips prepared with either palm olein or soybean oil were collected from 10 producers in Yaoundé. Quality parameters determined in this study were: fatty acid composition of the oils, determined by gas chromatography (GC) of free acid methyl ester; trans fatty acids, determined by Fourier transform infra-red spectroscopy; Tocopherols and tocotrienols as markers of nutritional quality were analyzed by High Performance Liquid Chromatography in isocratic mode. Free fatty acids and acylglycerols as markers of lipid hydrolysis were analyzed by GC of trimethylsilyl derivatives of glycerides. Conjugated dienes, Anisidine value and viscosity as markers of lipid oxidation and thermal decomposition of the oils; acrylamide which is formed through Maillard reaction and identified as a toxic compound in various fried products. Asparagine content of the raw fresh plantain powder was also determined. Fatty acid composition of palm oleins was stable within a day of intermittent frying. In soybean oils, about 57% and 62.5% of linoleic and linolenic acids were lost but trans fatty acids were not detected. Soybean oils were partly hydrolysed leading to the formation of free fatty acids, monoacylglycerols and diacylglycerols. In both oils, tocopherols and tocotrienols contents decreased significantly by about 50%. Anisidine value (AV) and polymers contents increased slightly in fried palm oleins while conjugated hydroperoxides, AV and polymers greatly increased in soybean oils. Acrylamide was not detected in the chips. This is explained by the absence of asparagine in the raw plantains, the other acrylamide precursors being present. This study shows that the plantain chips prepared at the small-scale level in Yaounde with palm olein are of good quality regarding oxidation and hydrolysis parameters and the absence of acrylamide. In contrast, oxidation developed with soybean oil whose usage for frying should be questioned. Considering that asparagine is the limiting factor for the formation of acrylamide in plantain chips, its content depending on several factors such as production parameters and maturity stage should be explored.
Resumo:
This study aimed to identify physiological markers in superficially scalded 'Rocha' pear (Pyrus communis L 'Rocha') that would relate to chlorophyll a fluorescence (CF), allowing a non-invasive diagnosis of the disorder. Conditions chosen before shelf life provided two fruit groups with different developing patterns and severity of superficial scald: T fruit fully developed the disorder in storage, while C fruit developed it progressively throughout shelf life. Principal component analysis (PCA) of all the measured variables, and simple linear correlations among several major parameters and scald index (SI)/shelf life showed that scald and ripening/aging were concurring processes, and that it was not possible to isolate a particular variable that could deliver a direct non-invasive diagnosis of the disorder. For both fruit groups the SI resulted from the balance between the reducing power (OD200) and the content of conjugated trienols (CTos) and alpha-farnesene (alpha-Farn) in the fruit peel. At OD200 > 150 there was a linear relationship between CTos and OD200, suggesting that the level of antioxidants was self-adjusted in order to compensate the CTos level. However, at OD200 < 150 this relationship disappeared. A consistent linear relationship between dos and alpha-Farn existed throughout shelf life in both fruit groups, contrarily to the early storage stage, when those compounds do not relate linearly. The CF variables F-0, F-v/F-m, and the colorimetric variables, L* and h degrees were used in multi-linear regressions with other physiological variables. The regressions were made on one of the fruit groups and validated through the other. Reliable regressions to alpha-Farn and CTos were obtained (R approximate to 0.6; rmsec approximate to rmsep). Our results suggest that a model based on CF and colorimetric parameters could be used to diagnose non-invasively both the contents and the relationship between alpha-Farn and CTos and hence the stage of scald development. (C) 2011 Elsevier By. All rights reserved.
Resumo:
Schottky barrier diodes are made from virtually all semiconducting polymers. Application of Schottky barriers on the development of electronic devices built from semiconducting polymers prompted this research. The article investigated the dc and ac admittance of Schottky barrier which occur at the interface between aluminum and poly(3-methyl thiophene) made ready by electropolymerisation. The experiment revealed that the interfacial layers occurring in polymer Schottky barriers is significant in the response of the controlling device.
Resumo:
Schottky diodes resulting from an intimate contact of aluminum on electrodeposited poly(3-methylthiopene) were studied by admittance spectroscopy, capacitance-voltage measurements and voltaic and optically-induced current and capacitance transients. The loss tangents show the existence of interface states that can be removed by vacuum annealing. Furthermore, the C-V curves contradict the idea of movement of the dopant ions.
Resumo:
Schottky barrier diodes based on Al/poly(3-methylthiophene)/Au have been fabricated and their electrical behaviour investigated. I-V characteristics revealed a dependence on the fabrication conditions, specifically on the time under vacuum prior to evaporation of the rectifying contact and post-metal annealing at elevated temperature. The available evidence is consistent with the formation of a thin insulating layer between the metal and the polymer following these procedures. Long periods under vacuum prior to deposition of the aluminium electrode reduced the likelihood of such a layer forming. Capacitance-voltage plots of the devices were stable to voltage cycling, so long as the forward voltage did not exceed similar to 1 V. Above this a small degree of hysteresis was observed, which is attributed to the filling/emptying of interface states or traps in the polymer.
Resumo:
Purpose: To develop docetaxel (DTX)- and alendronate (ALN)-loaded, chitosan (CS)-conjugated polylactide- co-glycolide (PLGA) nanoparticles (NPs) to increase therapeutic efficacy in osteosarcoma cells. Methods: Drug-loaded PLGA NPs were prepared by nanoprecipitation and chemically conjugated by the carboxylic group of PLGA to the amine-bearing CS polymer. The nanocarrier was characterized by dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and differential scanning calorimetry as well as by in vitro drug release and cell culture studies. Results: NP size was within the tumour targeting range (~200 nm) with an effective positive charge (20 mV), thus increasing cellular uptake efficiency. Morphological analysis revealed clear spherical particles with uniform dispersion. The NPs exhibited identical sustained release kinetics for both DTX and ALN. CS-conjugated PLGA with dual-drug-loaded (DTX and AL) NPs showed typical time-dependent cellular uptake and also displayed superior cytotoxicity in MG-63 cells compared with blank NPs, which were safe and biocompatible. Conclusion: Combined loading of DTX and ALN in NPs increased the therapeutic efficacy of the formulation for osteosarcoma treatment, thus indicating the potential benefit of a combinatorial drug regimen using nanocarriers for effective treatment of osteosarcoma.
Resumo:
This study aimed to identify physiological markers in superficially scalded 'Rocha' pear (Pyrus communis L 'Rocha') that would relate to chlorophyll a fluorescence (CF), allowing a non-invasive diagnosis of the disorder. Conditions chosen before shelf life provided two fruit groups with different developing patterns and severity of superficial scald: T fruit fully developed the disorder in storage, while C fruit developed it progressively throughout shelf life. Principal component analysis (PCA) of all the measured variables, and simple linear correlations among several major parameters and scald index (SI)/shelf life showed that scald and ripening/aging were concurring processes, and that it was not possible to isolate a particular variable that could deliver a direct non-invasive diagnosis of the disorder. For both fruit groups the SI resulted from the balance between the reducing power (OD200) and the content of conjugated trienols (CTos) and alpha-farnesene (alpha-Farn) in the fruit peel. At OD200 > 150 there was a linear relationship between CTos and OD200, suggesting that the level of antioxidants was self-adjusted in order to compensate the CTos level. However, at OD200 < 150 this relationship disappeared. A consistent linear relationship between dos and alpha-Farn existed throughout shelf life in both fruit groups, contrarily to the early storage stage, when those compounds do not relate linearly. The CF variables F-0, F-v/F-m, and the colorimetric variables, L* and h degrees were used in multi-linear regressions with other physiological variables. The regressions were made on one of the fruit groups and validated through the other. Reliable regressions to alpha-Farn and CTos were obtained (R approximate to 0.6; rmsec approximate to rmsep). Our results suggest that a model based on CF and colorimetric parameters could be used to diagnose non-invasively both the contents and the relationship between alpha-Farn and CTos and hence the stage of scald development. (C) 2011 Elsevier By. All rights reserved.
Resumo:
Schottky barrier diodes are made from virtually all semiconducting polymers. Application of Schottky barriers on the development of electronic devices built from semiconducting polymers prompted this research. The article investigated the dc and ac admittance of Schottky barrier which occur at the interface between aluminum and poly(3-methyl thiophene) made ready by electropolymerisation. The experiment revealed that the interfacial layers occurring in polymer Schottky barriers is significant in the response of the controlling device.
Resumo:
Schottky diodes resulting from an intimate contact of aluminum on electrodeposited poly(3-methylthiopene) were studied by admittance spectroscopy, capacitance-voltage measurements and voltaic and optically-induced current and capacitance transients. The loss tangents show the existence of interface states that can be removed by vacuum annealing. Furthermore, the C-V curves contradict the idea of movement of the dopant ions.
Resumo:
Schottky barrier diodes based on Al/poly(3-methylthiophene)/Au have been fabricated and their electrical behaviour investigated. I-V characteristics revealed a dependence on the fabrication conditions, specifically on the time under vacuum prior to evaporation of the rectifying contact and post-metal annealing at elevated temperature. The available evidence is consistent with the formation of a thin insulating layer between the metal and the polymer following these procedures. Long periods under vacuum prior to deposition of the aluminium electrode reduced the likelihood of such a layer forming. Capacitance-voltage plots of the devices were stable to voltage cycling, so long as the forward voltage did not exceed similar to 1 V. Above this a small degree of hysteresis was observed, which is attributed to the filling/emptying of interface states or traps in the polymer.
Resumo:
Crystalline metal phosphonates are referred to as a type of structurally versatile coordination polymers [1]. Many of them contain guest molecules (H2O, heterocyclics, etc.), acidic sites and, furthermore, their structure can be also amenable for post‐synthesis modifications in order to enhance desired properties [2]. In the present work, we examine the relationships between crystal structure and proton conductivity for several metal phosphonates derive from multifunctional ligands, such as 5-(dihydroxyphosphoryl)isophthalic acid (PiPhtA) [3] and 2-hydroxyphosphonoacetic acid (H3HPAA). Crystalline divalent metal derivatives show a great structural diversity, from 1D to 3D open-frameworks, possessing hydrogen-bonded water molecules and acid groups. These solids present a proton conductivity range between 7.2·10-6 and 1.3·10−3 S·cm-1. Upon exposure to ammonia vapor, from an aqueous solution, solid state transformations are observed accompanied of enhance proton conductivities. The stability of these solids under different environment conditions (temperature and relative humidities) as well as the influence of the ammonia adsorption on the proton conduction properties of the resulting solids will be discussed.
Resumo:
Biological detectors, such as canines, are valuable tools used for the rapid identification of illicit materials. However, recent increased scrutiny over the reliability, field accuracy, and the capabilities of each detection canine is currently being evaluated in the legal system. For example, the Supreme Court case, State of Florida v. Harris, discussed the need for continuous monitoring of canine abilities, thresholds, and search capabilities. As a result, the fallibility of canines for detection was brought to light, as well as a need for further research and understanding of canine detection. This study is two-fold, as it looks to not only create new training aids for canines that can be manipulated for dissipation control, but also investigates canine field accuracy to objects with similar odors to illicit materials. ^ It was the goal of this research to improve upon current canine training aid mimics. Sol-gel polymer training aids, imprinted with the active odor of cocaine, were developed. This novel training aid improved upon the longevity of currently existing training aids, while also provided a way to manipulate the polymer network to alter the dissipation rate of the imprinted active odors. The manipulation of the polymer network could allow handlers to control the abundance of odors presented to their canines, familiarizing themselves to their canine’s capabilities and thresholds, thereby increasing the canines’ strength in court.^ The field accuracy of detection canines was recently called into question during the Supreme Court case, State of Florida v. Jardines, where it was argued that if cocaine’s active odor, methyl benzoate, was found to be produced by the popular landscaping flower, snapdragons, canines will false alert to said flowers. Therefore, snapdragon flowers were grown and tested both in the laboratory and in the field to determine the odors produced by snapdragon flowers; the persistence of these odors once flowers have been cut; and whether detection canines will alert to both growing and cut flowers during a blind search scenario. Results revealed that although methyl benzoate is produced by snapdragon flowers, certified narcotics detection canines can distinguish cocaine’s odor profile from that of snapdragon flowers and will not alert.^