852 resultados para COBALT NANOPARTICLES
Resumo:
Nanocomposites were prepared from mixture of different concentrations of ferroelectric nanoparticles in an elastomeric matrix based on the vulcanized natural rubber. The morphological characterization of nanocomposites was carried out using Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM). The nanocrystalline ferroelectric oxide is potassium strontium niobate (KSN) with stoichiometry KSr2Nb5O15, and was synthesized by the chemical route using a modified polyol method, obtaining particle size and microstrain equal to 20 nm and 0.32, respectively. These ferroelectric nanoparticles were added into the natural rubber in concentrations equal to 1, 3, 5, 10, 20 and 50 phr (parts per hundred of rubber) forming ferroelectric nanocomposites (NR/KSN). Using morphological characterization, we identified the maximum value of surface roughness at low concentrations, in particular, sample with 3 phr of nanoparticles and factors such as encapsulation and uniformity in the distribution of nanoparticles into the natural rubber matrix are investigated and discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Solid state chelates of general formula H-2[M(EDTA)] . nH2O, where M is Co, Ni, Cu or Zn, and EDTA is ethylenediaminetetraacetate, were prepared. Thermogravimetry-derivative thermogravimetry (TG-DTG), differential thermal analysis (DTA) and complexometry were used to characterize and to study the thermal stability and thermal decomposition of these compounds.
Resumo:
The thermal decomposition of pyrrolidinedithiocarbamate and piperidinedithiocarbamate complexes of CoII, NiII, CuII and HgII have been studied by thermogravimetry and differential scanning calorimetry. The decomposition intermediates and final products were identified by their X-ray diffraction patterns. The i.r. spectra are discussed in terms of the thermal decomposition pathways.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A glassy carbon electrode chemically modified with nickel nanoparticles coupled with reversed-phase chromatography with pulsed amperometric detection was used for the quantitative analysis of furanic aldehydes in a real sample of sugarcane bagasse hydrolysate. Chromatographic separation was carried out in isocratic conditions (acetonitrile/water, 1:9) with a flow rate of 1.0 mL/min, a detection potential of -50 mV vs. Pd, and the process was completed within 4 min. The analytical curves presented limits of detection of 4.0 × 10(-7) mol/L and 4.3 × 10(-7) mol/L, limits of quantification of 1.3 × 10(-6) and 1.4 × 10(-6) mol/L, amperometric sensitivities of 2.2 × 10(6) nA mol/L and 2.7 × 10(6) nA mol/L for furfural and 5-hydroxymethylfurfural, respectively. The values obtained in this sample by the standard addition method were 1.54 ± 0.02 g/kg for 5-hydroxymethylfurfural and 11.5 ± 0.2 g/kg for furfural. The results demonstrate that this new proposed method can be used for the quick detection of furanic aldehydes without the interference of other electroactive species, besides having other remarkable merits that include excellent peak resolution, analytical repeatability, sensitivity, and accuracy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The synergistic effect produced by metallic nanoparticles when incorporated into different systems empowers a research field that is growing rapidly. In addition, organometallic materials are at the center of intensive research with diverse applications such as light-emitting devices, transistors, solar cells, and sensors. The Langmuir-Blodgett (LB) technique has proven to be suitable to address challenges inherent to organic devices, since the film properties can be tuned at the molecular level. Here we report a strategy to incorporate gold nanoparticles (AuNPs) into the LB film by co-deposition in order to achieve surface-enhanced Raman scattering (SERS) of the zinc(II)-protoporphyrin (IX) dimethyl ester (ZnPPIX-DME). Prior to the LB co-deposition, the properties of the Langmuir monolayer of ZnPPIX-DME at the air-water interface, containing AuNPs in the subphase, are studied through the surface-pressure versus mean molecular area (π-A) isotherms. The ZnPPIX-DME+AuNPs π-A isotherm presented a significant shift to higher molecular area, suggesting an interaction between both ZnPPIX-DME molecules and AuNPs. Those interactions are a key factor allowing the co-deposition of both AuNPs and ZnPPIX-DME molecules onto a solid substrate, thus forming the LB film. SERS of ZnPPIX-DME was successfully attained, ensuring the spatial distribution of the AuNPs. Higher enhancement factors were found at AuNP aggregates, as a result of the intense local electromagnetic field found in the metal nanoparticle aggregates. The main vibrational bands observed in the SERS spectra suggest a physical adsorption of the ZnPPIX-DME onto the surface of AuNPs. The latter is not only in agreement with the interactions pointed out by the π-A isotherms but also suggests that this interaction is kept upon LB film co-deposition.
Resumo:
In this work, crystalline titanium dioxide (TiO2) nanoparticles with variable average crystallite sizes (e.g., 8 nm) and surface areas (e.g., 192 m² g-1) were synthesized in pure anatase phase using H2O2 to reduce the hydrolysis rate of the titanium ions. An isopropanol (IP) solution was employed as the reaction medium. The TiO2 nanoparticles were characterized by powder X-ray diffraction analysis (XRD), Raman spectroscopy and transmission electron microscopy (TEM). By changing the synthesis parameters it was possible to control nanoparticle size and avoid the coalescence process. A dependence of the Raman wavenumber on the nanocrystal sizes was determined, which is quite useful for a quick check of the size of TiO2 nanocrystals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The cationic dyes 9-aminoacridine (9AA) and safranine (Sf) were entrapped into silica spheres of about 0.2 mu m diameter prepared by modified Stober method. The fluorescent materials are investigated by steady-state and time-resolved emission, in addition of confocal fluorescence microscopy. Silica particles containing 9-aminoacridine (SP9AA) and safranine (SPSf or both dyes (SPSf9AA) are emissive particles. When both dyes are present in the same particle but loaded in sequential stages 9AA emission is quenched as a consequence of energy transfer from 9AA (donor) to Sf (acceptor). This result suggests that particle growing processes where the acceptor is incorporated first into the core do not prevent donor/acceptor pairs to be close due to an overlay of the concentration gradients of both dyes in a radial core-shell like distribution. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Gold nanoparticles (Au-NPs) were deposited on single layer graphene (SLG) and few layers graphene (FLG) by applying the gas aggregation technique, previously adapted to a 4-gun commercial magnetron sputtering system. The samples were supported on SiO2 (280 nm)/Si substrates, and the influence of the applied DC power and deposition times on the nanoparticle-graphene system was investigated by Confocal Raman Microscopy. Analysis of the G and 2D bands of the Raman spectra shows that the integrated intensity ratio (I-2D/I-G) was higher for SLG than for FLG. For the samples produced using a sputtering power of 30W, the intensity (peak height) of the G and 2D bands increased with the deposition time, whereas for those produced applying 60W the peak heights of the G and 2D bands decreased with the deposition time. This behaviour was ascribed to the formation of larger Au-NPs aggregates in the last case. A significant increase of the Full Width Half Maximum (FWHM) of the G band for SLG and FLG was also observed as a function of the DC power and deposition time. Surprisingly, the fine details of the Raman spectra revealed an unintentional doping of SLG and FLG accompanying the increase of size and aggregation of the Au-NPs. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Polyvinylpyrollidone (PVP)-capped platinum nanoparticles (NPs) are found to change shape from spherical to flat when deposited on mesoporous silica substrates (SBA-15). Transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and extended X-ray absorption fine structure (EXAFS) analyses are used in these studies. The SAXS results indicate that, after deposition, the 2 nm NPs have an average gyration radius 22% larger than in solution, while the EXAFS measurements indicate a decrease in first neighbor co-ordination number from 9.3 to 7.4. The deformation of these small capped NPs is attributed to interactions with the surface of the SBA-15 support, as evidenced by X-ray absorption near-edge structure (XANES).