950 resultados para CATIONIC AMPHIPHILE
Resumo:
BACKGROUND: Exhaled nitric oxide (FENO) is a marker for allergic airway inflammation. We wondered whether in patients with intermittent allergic rhinitis only (i) natural pollen exposure and (ii) artificial pollen exposure by repeated nasal allergen provocations may lead to an elevation of FENO. METHODS: In two prospective studies, we compared the FENO of nonatopic controls with the FENO of nonasthmatic individuals with mild intermittent rhinitis to tree and/or grass pollen. Study I: 13 atopic individuals and seven controls had measurements of FENO, blood eosinophils and eosinophilic cationic protein (ECP) before, during and after pollen season. Study II: 16 atopic individuals and 12 controls had nasal allergen provocations on four following days out of pollen season, with daily measurements of FENO before, 2 and 6 h after provocation, and determination of blood eosinophils, ECP and FEV1 at baseline, on days 5 and 10-12. RESULTS: Natural pollen exposure (study I) caused a significant elevation of FENO in allergic individuals. Nasal allergen provocations (study II) did not elicit a statistically significant rise neither of FENO nor of blood eosinophils between baseline and day 5. However, a subgroup of four individuals with a rise of blood eosinophils during nasal allergen provocations showed also a rise of FENO. CONCLUSIONS: We suppose that in allergic rhinitis a concomitant reaction of the bronchial system is dependent on a strong local inflammation leading to a generalized immune stimulation.
Resumo:
Despite efforts implicating the cationic channel transient receptor potential melastatin member 4 (TRPM4) to cardiac, nervous, and immunological pathologies, little is known about its structure and function. In this study, we optimized the requirements for purification and extraction of functional human TRPM4 protein and investigated its supra-molecular assembly. We selected the Xenopus laevis oocyte expression system because it lacks endogenous TRPM4 expression, it is known to overexpress functional human membrane channels, can be used for structure-function analysis within the same system, and is easily scaled to improve yield and develop moderate throughput capabilities through the use of robotics. Negative-stain electron microscopy (EM) revealed various sized low-resolution particles. Single particle analysis identified the majority of the projections represented the monomeric form with additional oligomeric structures potentially characterized as tetramers. Two-electrode voltage clamp electrophysiology demonstrated that human TRPM4 is functionally expressed at the oocyte plasma membrane. This study opens the door for medium-throughput screening and structure-function determination of this important therapeutically relevant target.
Resumo:
Amino acids are necessary for all living cells and organisms. Specialized transporters mediate the transfer of amino acids across plasma membranes. Malfunction of these proteins can affect whole-body homoeostasis giving raise to diverse human diseases. Here, we review the main features of the SLC3 and SLC7 families of amino acid transporters. The SLC7 family is divided into two subfamilies, the cationic amino acid transporters (CATs), and the L-type amino acid transporters (LATs). The latter are the light or catalytic subunits of the heteromeric amino acid transporters (HATs), which are associated by a disulfide bridge with the heavy subunits 4F2hc or rBAT. These two subunits are glycoproteins and form the SLC3 family. Most CAT subfamily members were functionally characterized and shown to function as facilitated diffusers mediating the entry and efflux of cationic amino acids. In certain cells, CATs play an important role in the delivery of L-arginine for the synthesis of nitric oxide. HATs are mostly exchangers with a broad spectrum of substrates and are crucial in renal and intestinal re-absorption and cell redox balance. Furthermore, the role of the HAT 4F2hc/LAT1 in tumor growth and the application of LAT1 inhibitors and PET tracers for reduction of tumor progression and imaging of tumors are discussed. Finally, we describe the link between specific mutations in HATs and the primary inherited aminoacidurias, cystinuria and lysinuric protein intolerance.
Resumo:
Human embryonic kidney cells 293 (HEK293) are widely used as cellular heterologous expression systems to study transfected ion channels. This work characterizes the endogenous expression of TRPM4 channels in HEK293 cells. TRPM4 is an intracellular Ca(2+)-activated non-selective cationic channel expressed in many cell types. Western blot analyses have revealed the endogenous expression of TRPM4. Single channel 22pS conductance with a linear current-voltage relationship was observed using the inside-out patch clamp configuration in the presence of intracellular Ca(2+). The channels were permeable to the monovalent cations Na(+) and K(+), but not to Ca(2+). The open probability was voltage-dependent, being higher at positive potentials. Using the whole-cell patch clamp "ruptured patch" configuration, the amplitude of the intracellular Ca(2+)-activated macroscopic current was dependent on time after patch rupture. Initial transient activation followed by a steady-increase reaching a plateau phase was observed. Biophysical analyses of the macroscopic current showed common properties with those from HEK293 cells stably transfected with human TRPM4b, with the exception of current time course and Ca(2+) sensitivity. The endogenous macroscopic current reached the plateau faster and required 61.9±3.5μM Ca(2+) to be half-maximally activated versus 84.2±1.5μM for the transfected current. The pharmacological properties, however, were similar in both conditions. One hundred μM of flufenamic acid and 9-phenanthrol strongly inhibited the endogenous current. Altogether, the data demonstrate the expression of endogenous TRMP4 channels in HEK293 cells. This observation should be taken into account when using this cell line to study TRPM4 or other types of Ca(2+)-activated channels.
Resumo:
Innate immune recognition of extracellular host-derived self-DNA and self-RNA is prevented by endosomal seclusion of the Toll-like receptors (TLRs) in the dendritic cells (DCs). However, in psoriasis plasmacytoid dendritic cells have been found to be able to sense self-DNA molecules in complex with the endogenous cationic antimicrobial peptide LL37, which are internalized into the endosomal compartments and thus can access TLR9. We investigated whether this endogenous peptide can also interact with extracellular self-RNA and lead to DC activation. We found that LL37 binds self-RNA as well as self-DNA going into an electrostatic interaction; forms micro-aggregates of nano-scale particles protected from enzymatic degradation and transport it into the endosomal compartments of both plasmacytoid and myeloid dendritic cells. In the plasmacytoid DCs, the self-RNA-LL37 complexes activate TLR7 and like the self-DNA-LL37 complexes, trigger the production of IFN-α in the absence of induction of maturation or production of IL-6 and TNF-α. In contrast to the self-DNA-LL37 complexes, the self-RNA-LL37 complexes are also internalized into the endosomal compartments of myeloid dendritic cells and trigger activation through TLR8, leading to the production of TNF-α and IL-6, and the maturation of the myeloid DCs. Furthermore, we found that these self nucleic acid-LL37 complexes can be found in vivo in the skin lesions of the cutaneous autoimmune disease psoriasis, where they are associated with mature mDCs in situ. On the other hand, in the systemic autoimmune disease systemic lupus erythematosus, self-DNA-LL37 complexes were found to be a constituent of the circulating immune complexes isolated from patient sera. This interaction between the endogenous peptide with the self nucleic acid molecules present in the immune complexes was found to be electrostatic and it confers resistance to enzymatic degradation of the nucleic acid molecules in the immune complexes. Moreover, autoantibodies to these endogenous peptides were found to trigger neutrophil activation and release of neutrophil extracellular traps composed of DNA, which are potential sources of the self nucleic acid-LL37 complexes present in SLE immune complexes. Our results demonstrate that the cationic antimicrobial peptide LL37 drives the innate immune recognition of self nucleic acid molecules through toll-like receptors in human dendritic cells, thus elucidating a pathway for innate sensing of host cell death. This pathway of autoreactivity was found to be pathologically relevant in human autoimmune diseases psoriasis and SLE, and thus this study provides new insights into the mechanisms autoimmune diseases.
Resumo:
Cell penetrating peptides (CPP) are peptides of 10 to 30 residues derived from natural translocating proteins. Multivalency is known to enhance cellular uptake for the Tat peptide and closely related polycationic sequences. To test whether multivalency effects on cellular uptake might also occur with other CPP types, we prepared multivalent versions of the strongly cationic Tat, the amphipathic sequences Antp, pVEC and TP10, and the polyproline helix SAP by convergent thioether ligation of the linear CPP onto multivalent scaffolds, and evaluated their uptake in HeLa and CHO cells, intracellular localization, cytotoxicity and hemolysis. While multivalency did not increase the cellular uptake of pVEC or SAP, multivalency effects on uptake comparable to Tat were observed with TP10 and Antp, which are attributable to their polycationic nature. The efficient synthetic protocol for these divalent CPP and their localization in the cytoplasm suggest that CPP might be useful for application in cargo delivery into cells.
Resumo:
Cupiennins are small cationic a-helical peptides from the venom of the ctenid spider Cupiennius salei which are characterized by high bactericidal as well as hemolytic activities. To gain insight into the determinants responsible for the broad cytolytic activities, two analogues of cupiennin 1a with different N-terminal hydrophobicities were designed. The insecticidal, bactericidal and hemolytic activities of these analogues were assayed and compared to the native peptide. Specifically, substitution of two N-terminal Phe residues by Ala results in less pronounced insecticidal and cytolytic activity, whereas a substitution by Lys reduces strongly its bactericidal activity and completely diminishes its hemolytic activity up to very high tested concentrations. Biophysical analyses of peptide/bilayer membrane interactions point to distinct interactions of the analogues with lipid bilayers, and dependence upon membrane surface charge. Indeed, we find that lower hemolytic activity was correlated with less surface association of the analogues. In contrast, our data indicate that the reduced bactericidal activity of the two cupiennin 1a analogues likely correspond to greater bilayer-surface localization of the peptides. Overall, ultimate insertion and destruction of the host cell membrane is highly dependent on the presence of Phe-2 and Phe-6 (Cu 1a) or Leu-6 (Cu 2a) in the N-terminal sequences of native cupiennins.
Resumo:
Abstract Claystones are considered worldwide as barrier materials for nuclear waste repositories. In the Mont Terri underground research laboratory (URL), a nearly 4-year diffusion and retention (DR) experiment has been performed in Opalinus Clay. It aimed at (1) obtaining data at larger space and time scales than in laboratory experiments and (2) under relevant in situ conditions with respect to pore water chemistry and mechanical stress, (3) quantifying the anisotropy of in situ diffusion, and (4) exploring possible effects of a borehole-disturbed zone. The experiment included two tracer injection intervals in a borehole perpendicular to bedding, through which traced artificial pore water (APW) was circulated, and a pressure monitoring interval. The APW was spiked with neutral tracers (HTO, HDO, H2O-18), anions (Br, I, SeO4), and cations (Na-22, Ba-133, Sr-85, Cs-137, Co-60, Eu-152, stable Cs, and stable Eu). Most tracers were added at the beginning, some were added at a later stage. The hydraulic pressure in the injection intervals was adjusted according to the measured value in the pressure monitoring interval to ensure transport by diffusion only. Concentration time-series in the APW within the borehole intervals were obtained, as well as 2D concentration distributions in the rock at the end of the experiment after overcoring and subsampling which resulted in �250 samples and �1300 analyses. As expected, HTO diffused the furthest into the rock, followed by the anions (Br, I, SeO4) and by the cationic sorbing tracers (Na-22, Ba-133, Cs, Cs-137, Co-60, Eu-152). The diffusion of SeO4 was slower than that of Br or I, approximately proportional to the ratio of their diffusion coefficients in water. Ba-133 diffused only into �0.1 m during the �4 a. Stable Cs, added at a higher concentration than Cs-137, diffused further into the rock than Cs-137, consistent with a non-linear sorption behavior. The rock properties (e.g., water contents) were rather homogeneous at the centimeter scale, with no evidence of a borehole-disturbed zone. In situ anisotropy ratios for diffusion, derived for the first time directly from field data, are larger for HTO and Na-22 (�5) than for anions (�3�4 for Br and I). The lower ionic strength of the pore water at this location (�0.22 M) as compared to locations of earlier experiments in the Mont Terri URL (�0.39 M) had no notable effect on the anion accessible pore fraction for Cl, Br, and I: the value of 0.55 is within the range of earlier data. Detailed transport simulations involving different codes will be presented in a companion paper.
Resumo:
The diffusion of radionuclides is an important safety aspect for nuclear waste disposal in argillaceous host rocks. A long-term diffusion experiment, termed DI-A, is being carried out at the Mont Terri Rock Laboratory in the Opalinus Clay formation. The aim of this experiment is the understanding of the migration and sorption behaviour of cationic and anionic species in consolidated clays. This study reports on the experimental layout and the first results obtained from the DI-A experiment, which include the investigation of HTO, Na-22(+), Cs+, and I- migration during a period of 1 year by analysing these tracers in the water circulating in the borehole. In addition, results obtained from through-diffusion experiments on small-sized samples with HTO, I-, and Cl-36(-) are presented. The decrease of tracer concentrations in the borehole is fastest for Cs+, followed by Na-22(+), HTO, and finally I-. The chemical composition of the artificial pore water in the borehole shows very little variation with time, thus indicating almost no chemical disturbance around the borehole. Through-diffusion experiments in the laboratory that were performed parallel to the bedding plane with two different methods yielded effective diffusion coefficients for HTO of 4-5 X 10(-11) m(2) s(-1) and significantly lower ones for anions Cl- and I- (0.7-1.6 X 10(-11) m(2) s(-1)). The results indicate the importance of anion exclusion effects arising from the negatively charged clay surfaces. Furthermore, they demonstrate the anisotropic diffusion properties of the clay formation with significantly increased diffusion rates parallel to bedding relative to the perpendicular direction. The tracer data of the in situ experiment were successfully described with 2D diffusion models using diffusion and sorption parameters obtained from the above mentioned and other laboratory studies. The modelling results indicate that HTO and I- diffused with no retardation. The retardation of Na+ and Cs+ could be described by empirical sorption expressions from previously derived batch sorption (Cs+) or diffusion (Na+) experiments. Overall, the obtained results demonstrate the feasibility of the technical concept to study the diffusion of nonsorbing and sorbing tracers in consolidated clays. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The venom of the ctenid spider Cupiennius salei (Fig.16.1) is rich in components which belong to different functional groups. Besides low molecular mass compounds, the venom contains several disulphide-rich peptides, also called mini-proteins, which act as neurotoxins on ion channels or as enhancers of neurotoxins. Likewise, a variety of small cytolytic peptides, which destroy membranes very efficiently, and enzymes are present in the venom. Neurotoxins with cytolytic activity, cytolytic a-helical small cationic peptides and enzymes most probably attacking connective tissue and phospholipid membranes cause the overall cytotoxic effect of this venom. Synergistic and enhancing interactions between components enable the spider to achieve a maximum of toxicity with a minimum of venom quantity.
Resumo:
OBJECTIVE: Human defensins and cathelicidins are a family of cationic antimicrobial peptides (AMPs), which play multiple roles in both innate and adaptive immune systems. They have direct antimicrobial activity against several microorganisms including burn pathogens. The majority of components of innate and adaptive immunity either express naturally occurring defensins or are otherwise chemoattracted or functionally affected by them. They also enhance adaptive immunity and wound healing and alter antibody production. All mechanisms to explain multiple functions of AMPs are not clearly understood. Prior studies to localize defensins in normal and burned skin using deconvolution fluorescence scanning microscopy indicate localization of defensins in the nucleus, perinuclear regions, and cytoplasm. The objective of this study is to further confirm the identification of HBD-1 in the nucleus by deconvolution microscopic studies involving image reconstruction and wire frame modeling. RESULTS: Our study demonstrated the presence of intranuclear HBD-1 in keratinocytes throughout the stratum spinosum by costaining with the nuclear probe DAPI. In addition, HBD-1 sequence does show some homology with known cationic nuclear localization signal sequences. CONCLUSION: To our knowledge, this is the first report to localize HBD-1 in the nuclear region, suggesting a role for this peptide in gene expression and providing new data that may help determine mechanisms of defensin functions.
Resumo:
Amplification or overexpression of HER-2/neu has been demonstrated in human cancers of the ovary, breast, lung and correlated with chemoresistance and poor clinic prognosis. We have previously found that the adenovirus type 5 early region 1A (E1A) gene product can repress the overexpression and suppress the tumorigenic potential of HER-2/neu-overexpressing cancer cells. In addition, E1A has been reported to induce apoptosis and inhibit the metastatic potential of tumor cells. Therefore, E1A could be considered as a tumor suppressor gene in HER-2/neu-overexpressing cancer cells. To develop an efficient HER-2/neu-targeting gene therapy with E1A, adenoviral vector or cationic liposome was used to introduce E1A into human ovarian, breast and lung cancer cells. Successful therapeutic effects were achieved.^ A replication-deficient adenovirus containing the E1A gene, Ad.E1A(+), was used to infect HER-2/neu-overexpressing human ovarian cancer cell line. Ovarian cancer growth in vitro and colony formation in soft agarose were greatly inhibited.^ To examine tumor suppressor function of E1A in breast cancer, we introduced E1A in vitro by adenovirus into both HER-2/neu-overexpressing and low-expressing human breast cancer cell lines. In HER-2/neu-overexpressing cells, E1A greatly inhibited tumor cell growth in vitro and colony formation in soft agarose. However, in low HER-2/neu expressing cancer cell lines, E1A could only reduce colony formation in soft agarose but had no significant effect on cell growth in monolayer, indicating different effects of E1A in these two types of cancer cells. To test the local therapeutic efficacy of E1A, we used either adenovirus- or liposome-mediated E1A gene delivery systems in an orthotopic breast cancer animal model.^ To test the therapeutic efficacy of systemically-delivered E1A in vivo lung cancer, we treated mice bearing intratracheal lung cancer by i.v. tail injections of Ad.E1A(+). As a result, Ad.E1A(+) suppressed HER-2/neu overexpression and inhibited intratracheal lung cancer growth. However, no significant tumor suppression effect of Ad.E1A(+) was observed in mice bearing HER-2/neu low expressing cell line when the same therapeutic procedure was followed. (Abstract shortened by UMI.) ^
Resumo:
A variety of human cancers overexpress the HER-2/neu proto-oncogene. Among patients with breast and ovarian cancers this HER-2/ neu overexpression indicates an unfavorable prognosis, with a shorter overall survival duration and a lower response rate to chemotherapeutic agents. Downregulation of HER-2/neu gene expression in cancer cells through attenuation of HER-2/neu promoter activity is, therefore, an attractive strategy for reversing the transformation phenotype and thus the chemoresistance induced by HER-2/neu overexpression. ^ A viral transcriptional regulator, the adenovirus type 5 E1A (early region 1A) that can repress the HER-2/neu promoter, had been identified in the laboratory of Dr. Mien-Chie Hung. Following the identification of the E1A gene, a series of studies revealed that repression of HER-2/neu by the E1A gene which can act therapeutically as a tumor suppressor gene for HER-2/ neu-overexpressing cancers. ^ The results of these preclinical studies became the basis for a phase I trial for E1A gene therapy among patients with HER-2/neu-overexpressing breast and ovarian cancer. In this dissertation, three primary questions concerned with new implications of E1A gene therapy are addressed: First, could E1A gene therapy be incorporated with conventional chemotherapy? Second, could the E1A gene be delivered systemically to exert an anti-tumor effect? And third, what is the activity of the E1A gene in low-HER-2/neu-expressing cancer cells? ^ With regard to the first question, the studies reported in this dissertation have shown that the sensitivity of HER-2/neu-overexpressing breast and ovarian cancer to paclitaxel is in fact enhanced by the downregulation of HER-2/neu overexpression by E1A. With regard to the second question, studies have shown that the E1A gene can exert anti-tumor activity by i.v. injection of the E1A gene complexed with the novel cationic liposome/protamine sulfate/DNA type I (LPDI). And with regard to the third question, the studies of low-HER-2/ neu-expressing breast and ovarian cancers reported here have shown that the E1A gene does in fact suppress metastatic capability. It did not, however, suppress the tumorigenicity. ^ Three conclusions can be drawn from the experimental findings reported in this dissertation. Combining paclitaxel with E1A gene therapy may expand the implications of the gene therapy in the future phase II clinical trial. Anti-tumor activity at a distant site may be achieved with the i.v. injection of the E1A gene. Lastly when administered therapeutically the anti-metastatic effect of the E1A gene in low-HER-2/neu-expressing breast cancer cells may prevent metastasis in primary breast cancer. (Abstract shortened by UMI.)^
Resumo:
The aim of this work was to clarify the mechanism taking place in field-enhanced sample injection coupled to sweeping and micellar EKC (FESI-Sweep-MEKC), with the utilization of two acidic high-conductivity buffers (HCBs), phosphoric acid or sodium phosphate buffer, in view of maximizing sensitivity enhancements. Using cationic model compounds in acidic media, a chemometric approach and simulations with SIMUL5 were implemented. Experimental design first enabled to identify the significant factors and their potential interactions. Simulation demonstrates the formation of moving boundaries during sample injection, which originate at the initial sample/HCB and HCB/buffer discontinuities and gradually change the compositions of HCB and BGE. With sodium phosphate buffer, the HCB conductivity increased during the injection, leading to a more efficient preconcentration by staking (about 1.6 times) than with phosphoric acid alone, for which conductivity decreased during injection. For the same injection time at constant voltage, however, a lower amount of analytes was injected with sodium phosphate buffer than with phosphoric acid. Consequently sensitivity enhancements were lower for the whole FESI-Sweep-MEKC process. This is why, in order to maximize sensitivity enhancements, it is proposed to work with sodium phosphate buffer as HCB and to use constant current during sample injection.
Resumo:
The development of electrophoretic computer models and their use for simulation of electrophoretic processes has increased significantly during the last few years. Recently, GENTRANS and SIMUL5 were extended with algorithms that describe chemical equilibria between solutes and a buffer additive in a fast 1:1 interaction process, an approach that enables simulation of the electrophoretic separation of enantiomers. For acidic cationic systems with sodium and H3 0(+) as leading and terminating components, respectively, acetic acid as counter component, charged weak bases as samples, and a neutral CD as chiral selector, the new codes were used to investigate the dynamics of isotachophoretic adjustment of enantiomers, enantiomer separation, boundaries between enantiomers and between an enantiomer and a buffer constituent of like charge, and zone stability. The impact of leader pH, selector concentration, free mobility of the weak base, mobilities of the formed complexes and complexation constants could thereby be elucidated. For selected examples with methadone enantiomers as analytes and (2-hydroxypropyl)-β-CD as selector, simulated zone patterns were found to compare well with those monitored experimentally in capillary setups with two conductivity detectors or an absorbance and a conductivity detector. Simulation represents an elegant way to provide insight into the formation of isotachophoretic boundaries and zone stability in presence of complexation equilibria in a hitherto inaccessible way.