919 resultados para Bulk Diffusion
Resumo:
Intercalation processes and corresponding diffusion paths of Li ions into spinel-type structured Li(1+x)Ti(2)O(4) (0 <= x <= 0.375) are systematically studied by means of periodic density functional theory calculations for different compositions and arrangements. An analysis of the site preference for intercalation processes is carried out, while energy barriers for the diffusion paths have been computed in detail. Our results indicate that the Li insertion is thermodynamically favorable at octahedral sites 16c in the studied composition range, and Li migration from tetrahedral sites 8a to octahedral sites 16c stabilizes the structure and becomes favorable for compositions x >= 0.25. Diffusion paths from less stable arrangements involving Li migrations between tetrahedral and octahedral sites exhibit the lowest energy barrier since the corresponding trajectories and energy profiles take place across a triangle made by three neighboring oxygen anions without structural modification. Theoretical and experimental diffusion coefficients are in reasonable agreement.
Resumo:
We show that the wavefunctions 〈pq; λ|n〈, of the harmonic oscillator in the squeezed state representation, have the generalized Hermite polynomials as their natural orthogonal polynomials. These wavefunctions lead to generalized Poisson Distribution Pn(pq;λ), which satisfy an interesting pseudo-diffusion equation: ∂Pnp,q;λ) ∂λ= 1 4 [ ∂2 ∂p2-( 1 λ2) ∂2 ∂q2]P2(p,q;λ), in which the squeeze parameter λ plays the role of time. Th entropies Sn(λ) have minima at the unsqueezed states (λ=1), which means that squeezing or stretching decreases the correlation between momentum p and position q. © 1992.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present analytical and numerical results for the specific heat and susceptibility amplitude ratios in parallel plate geometries. The results are derived using field-theoretic techniques suitable to describe the system in the bulk limit, i.e., (L/ξ±)≫ 1, where L is the distance between the plates and ξ± is the correlation length above (+) and below (-) the bulk critical temperature. Advantages and drawbacks of our method are discussed in the light of other approaches previously reported in the literature.
Resumo:
A flow-injection system is proposed for the spectrophotometric determination of sulphite in white wines. The method involves analyte conversion to SO2, gas diffusion through a Teflon® semi-permeable membrane, collection into an alkaline stream (pH 8), reaction with Malachite green (MG) and monitoring at 620 nm. With a concentric tubular membrane, the system design was simplified. Influence of reagent concentrations, pH of donor and acceptor streams, temperature, timing, surfactant addition and presence of potential interfering species of the wine matrix were investigated. A pronounced (ca. 100%) enhancement in sensitivity was noted by adding cetylpyridinium chloride (CPC). The proposed system is robust and baseline drift is not observed during 4 h operating periods. Only 400 μL of sample and 0.32 mg MG are required per determination. The system handles 30 samples per hour, yielding precise results (r.s.d. < 0.015 for 1.0 - 20.0 mg L-1 SO2) in agreement with those obtained by an alternative procedure.
Resumo:
Due to their low cost and high resistance to corrosion, ceramic crucibles can be used for the melting of PBG glasses (PbO-BiO 1.5GaO 1.5). These glasses present good window transmission from ultra-violet to infrared, making their use as optical fibres promising. However, their disadvantage is the high reactivity, leading to the corrosion of different crucibles, including gold and platinum ones. In this work, the corrosion of Al 2O 3, SnO 2 and ZrO 2 crucibles after melting at temperatures varying from 850 to 1000°C, was evaluated by Scanning Electronic Microscopy (SEM) in conjunction with microanalysis by EDS. The lead diffusion profile in the crucible material was obtained. Diffusion coefficients were calculated according to the Fick and Fisher theories. Results indicated that the different crucibles presented similar behaviour: in the region near the interface, diffusion occurs in the volumetric way and in regions away from the interface, diffusion occurs through grain boundary.
Resumo:
Laminar-forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumptions used in this work are a non-Newtonian fluid, laminar flow, constant physical properties, and negligible axial heat diffusion (high Peclet number). Most of the previous research in elliptical ducts deal mainly with aspects of fully developed laminar flow forced convection, such as velocity profile, maximum velocity, pressure drop, and heat transfer quantities. In this work, we examine heat transfer in a hydrodynamically developed, thermally developing laminar forced convection flow of fluid inside an elliptical tube under a second kind of a boundary condition. To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform, where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number, and the average Nusselt number for various cross-section aspect ratios.
Resumo:
The aim of this study was to evaluate the ability of endotoxin to diffuse through dentinal tubules towards the cement and to observe the period of time needed for it to reach the external root surface. Thirty single-rooted human teeth had their crowns and apices removed in order to standardize the root length to 15 mm. Teeth were instrumented until #30 K-file and made externally impermeable with epoxy adhesive, leaving 10 mm of the exposed root (middle third). The specimens were placed in plastic vials and irradiated (60Co gamma-rays). Then, they were divided into 2 groups (n = 15): G1) Escherichia coli endotoxin was inoculated into the root canal of the specimens and 1 ml of pyrogen-free water was put in the tubes; G2) (control): pyrogen-free water was inoculated into the root canals and 1 ml of pyrogen-free water was put in each tube. After 30 min, 2 h, 6 h, 12 h, 24 h, 48 h, 72 h and 7 days, the water of the tubes was removed and replaced. The removed aliquot was tested for the presence of endotoxin. Considering that the endotoxin is a B-lymphocyte polyclonal activator, at each experimental period, B-lymphocyte culture was stimulated with a sample of water removed from each tube and antibody (IgM) production was detected by ELISA technique. The results of IgM production were higher in groups of 24 h, 48 h, 72 h and 7 days in relation to the other studied groups, with statistically significant differences (ANOVA and Tukey's test p < 0.05). Endotoxin was able to diffuse through the dentinal tubules towards the cement, reaching the external root surface after the period of 24 h.
Resumo:
This paper reports the construction of an axisymmetric nonpremixed piloted jet burner, with well-defined initial and boundary conditions, known as the Delft burner, to assess turbulence-chemistry interaction in non-premixed turbulent flames. Detailed experimental information is described, involving hot-wire anemometry, thin-wire thermocouples and chemiluminescence visualization measurements. Radial profile of the axial mean velocity indicates excellent agreement between flow patterns developed within Delft installation and the one described herein. Chemiluminescence emissions from CH and C2 free-radicals were acquired with a CCD camera. Tomography reconstruction analysis was utilised to compare radical emissions and temperature spatial distributions. There was a strong dependence between temperature and CH/C 2 emissions. This is an indication that these radicals can be used in flame front studies.
Resumo:
This paper proposes a methodology for edge detection in digital images using the Canny detector, but associated with a priori edge structure focusing by a nonlinear anisotropic diffusion via the partial differential equation (PDE). This strategy aims at minimizing the effect of the well-known duality of the Canny detector, under which is not possible to simultaneously enhance the insensitivity to image noise and the localization precision of detected edges. The process of anisotropic diffusion via thePDE is used to a priori focus the edge structure due to its notable characteristic in selectively smoothing the image, leaving the homogeneous regions strongly smoothed and mainly preserving the physical edges, i.e., those that are actually related to objects presented in the image. The solution for the mentioned duality consists in applying the Canny detector to a fine gaussian scale but only along the edge regions focused by the process of anisotropic diffusion via the PDE. The results have shown that the method is appropriate for applications involving automatic feature extraction, since it allowed the high-precision localization of thinned edges, which are usually related to objects present in the image. © Nauka/Interperiodica 2006.
Resumo:
Metals and alloys containing solute atoms dissolved interstitially often show anelastic behavior due to a process know as stress-induced ordering. The application of mechanical spectroscopy measurements to diffusion studies in body-centered cubic metals has been extensively used in the last decades. However the kind of preferential occupation of interstitial solutes in body-centered cubic metals is still controversial. The anelastic properties of the Nb and Nb-1 wt% Zr polycrystalline alloys were determined by internal friction and oscillation frequency measurements using a torsion pendulum inverted performed between 300K and 650K, operating in a frequency oscillation in the hertz bandwidth. The interstitial diffusion coefficients of oxygen and nitrogen in Nb and Nb-1 wt% Zr samples were determined at two distinct conditions: (a) for low concentration of oxygen and (b) for high concentration of oxygen.
Resumo:
We investigate the formation of compositional modulation and atomic ordering in InGaP films. Such bulk properties - as well as surface morphologies - present a strong dependence on growth parameters, mainly the V/III ratio. Our results indicate the importance of surface diffusion and, particularly, surface reconstruction for these processes. Most importantly from the application point of view, we show that the compositional modulation is not necessarily coupled to the surface instabilities, so that smooth InGaP films with periodic compositional variation could be obtained. This opens a new route for the generation of templates for quantum dot positioning and three-dimensional arrays of nanostructures. © 2007 American Institute of Physics.
Resumo:
In order to study the influence of the amorphous Boron powder on the superconducting properties, MgB2 bulk samples were prepared using 96% and 99% pure commercial Boron powder as well as 92% commercial Boron powder after purification process. The results showed that the original 96% and the purified 92% powders have larger particle size compared to the pure 99% Boron powder, which leads to reduce magnetic critical current densities. In order to get higher performance MgB2, the purified low grade Boron powder need further control of their microstructure such as smaller particle size to enhance flux pinning from the grain boundaries which represent effective pinning centers. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Antifungal activity of natural products has been tested by adapting methods designed for synthetic drugs. In this study, two methods for the determination of antifungal activity of natural products, agar diffusion and broth microdilution, the CLSI reference methods for synthetic drugs, are compared and discussed. The microdilution method was more sensitive. The minimal inhibitory concentrations (MIC) of crude extracts, fractions and pure substances from different species of the plant families Piperaceae, Rubiaceae, Clusiaceae, Fabaceae and Lauraceae, from the Biota project, were determined. Antifungal activities against Candida albicans, C.krusei, C.parapsilosis and Cryptococcus neoformans were produced by several samples.
Root volume and dry matter of peanut plants as a function of soil bulk density and soil water stress
Resumo:
Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3×2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth.