934 resultados para Brain image classification
Resumo:
Background: Bipolar disorder is frequently misdiagnosed as major depressive disorder, delaying appropriate treatment and worsening outcome for many bipolar individuals. Emotion dysregulation is a core feature of bipolar disorder. Measures of dysfunction in neural systems supporting emotion regulation might therefore help discriminate bipolar from major depressive disorder. Methods: Thirty-one depressed individuals-15 bipolar depressed (BD) and 16 major depressed (MDD), DSM-IV diagnostic criteria, ages 18-55 years, matched for age, age of illness onset, illness duration, and depression severity-and 16 age- and gender-matched healthy control subjects performed two event-related paradigms: labeling the emotional intensity of happy and sad faces, respectively. We employed dynamic causal modeling to examine significant among-group alterations in effective connectivity (EC) between right- and left-sided neural regions supporting emotion regulation: amygdala and orbitomedial prefrontal cortex (OMPFC). Results: During classification of happy faces, we found profound and asymmetrical differences in EC between the OMPFC and amygdala. Left-sided differences involved top-down connections and discriminated between depressed and control subjects. Furthermore, greater medication load was associated with an amelioration of this abnormal top-down EC. Conversely, on the right side the abnormality was in bottom-up EC that was specific to bipolar disorder. These effects replicated when we considered only female subjects. Conclusions: Abnormal, left-sided, top-down OMPFC-amygdala and right-sided, bottom-up, amygdala-OMPFC EC during happy labeling distinguish BD and MDD, suggesting different pathophysiological mechanisms associated with the two types of depression.
Resumo:
We report a case of viriclans streptococcus brain abscess in a severely immunosuppressed HIV-infected patient with a history of chronic sinusitis. A 39-year-old homosexual man showed mental confusion and worsening of a frontal brain lesion after two weeks with antitoxoplasma therapy. Empiric treatment for central nervous system tuberculosis and pyogenic brain abscess was started. He underwent surgical drainage and the diagnosis of brain abscess due to viriclans streptococci was confirmed. All empiric treatments were stopped and ceftriaxone was used for eight weeks, showing complete clinical and radiological resolution. Although infrequent, viriclans streptococci, a common pyogenic aetiology of brain abscess in immunocompetent patients, should be considered in the differential diagnosis of brain lesions in AIDS patients.
Resumo:
The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism has been proposed as a possible candidate for involvement in the pathophysiology of bipolar disorder ( BD). To determine whether an association exists between the BDNF Val66Met genotype and morphometric abnormalities of the brain regions involved in memory and learning in BD and healthy subjects. Forty-two BD patients and 42 healthy subjects were studied. Interactions between BDNF Val66Met genotype and diagnosis in gray ( GM) volumes were analyzed using an optimized voxel-based morphometry technique. Declarative memory function was assessed with the California Verbal Learning Test II. Left and right anterior cingulate GM volumes showed a significant interaction between genotype and diagnosis such that anterior cingulate GM volumes were significantly smaller in the Val/Met BD patients compared with the Val/Val BD patients (left P = 0.01, right P = 0.01). Within-group comparisons revealed that the Val/Met carriers showed smaller GM volumes of the dorsolateral prefrontal cortex compared with the Val/Val subjects within the BD patient (P = 0.01) and healthy groups (left P = 0.03, right P = 0.03). The Val/Met healthy subjects had smaller GM volumes of the left hippocampus compared with the Val/Val healthy subjects (P<0.01). There was a significant main effect of diagnosis on memory function (P = 0.04), but no interaction between diagnosis and genotype was found (P = 0.48). The findings support an association between the BDNF Val66Met genotype and differential gray matter content in brain structures, and suggest that the variation in this gene may play a more prominent role in brain structure differences in subjects affected with BD. Neuropsychopharmacology (2009) 34, 1904-1913; doi: 10.1038/npp.2009.23; published online 18 March 2009
Resumo:
The human brain is often considered to be the most cognitively capable among mammalian brains and to be much larger than expected for a mammal of our body size. Although the number of neurons is generally assumed to be a determinant of computational power, and despite the widespread quotes that the human brain contains 100 billion neurons and ten times more glial cells, the absolute number of neurons and glial cells in the human brain remains unknown. Here we determine these numbers by using the isotropic fractionator and compare them with the expected values for a human-sized primate. We find that the adult male human brain contains on average 86.1 +/- 8.1 billion NeuN-positive cells (""neurons"") and 84.6 +/- 9.8 billion NeuN-negative (""nonneuronal"") cells. With only 19% of all neurons located in the cerebral cortex, greater cortical size (representing 82% of total brain mass) in humans compared with other primates does not reflect an increased relative number of cortical neurons. The ratios between glial cells and neurons in the human brain structures are similar to those found in other primates, and their numbers of cells match those expected for a primate of human proportions. These findings challenge the common view that humans stand out from other primates in their brain composition and indicate that, with regard to numbers of neuronal and nonneuronal cells, the human brain is an isometrically scaled-up primate brain. J. Comp. Neurol. 513:532-541, 2009. (c) 2009 Wiley-Liss, Inc.
Resumo:
Background: Organs from the so-called marginal donors have been used with a significant higher risk of primary non function than organs retrieved from the optimal donors. We investigated the early metabolic changes and blood flow redistribution in splanchnic territory in an experimental model that mimics marginal brain-dead (BD) donor. Material/Methods: Ten dogs (21.3 +/- 0.9 kg), were subjected to a brain death protocol induced by subdural balloon inflation and observed for 30 min thereafter without ally additional interventions. Mean arterial and intracranial pressures, heart rate, cardiac output (CO), portal vein and hepatic artery blood flows (PVBF and HABF, ultrasonic flowprobe), and O(2)-derived variables were evaluated. Results: An increase in arterial pressure, CO, PVBF and HABF was observed after BD induction. At the end, an intense hypotension with normalization in CO (3.0 +/- 0.2 VS. 2.8 +/- 2.8 L/min) and PVBF (687 +/- 114 vs. 623 +/- 130 ml/min) was observed, whereas HABF (277 33 vs. 134 28 ml/min, p<0.005) remained lower than baseline values. Conclusions: Despite severe hypotension induced by sudden increase of intracranial pressure, the systemic and splanchnic blood flows were partially preserved without signs of severe hypoperfusion (i.e. hyperlactatemia). Additionally, the HABF was mostly negatively affected in this model of marginal BD donor. Our data suggest that not only the cardiac output, but the intrinsic hepatic microcirculatory mechanism plays a role in the hepatic blood flow control after BD.
Resumo:
Neutron activation analysis was applied to assess trace element concentrations in brain tissues from normal (n = 21) and demented individuals (n = 21) of both genders aged more than 50 years. Concentrations of the elements Br, Fe, K, Na, Rb, Se and Zn were determined. Comparisons were made between the results obtained for the hippocampus and frontal cortex tissues, as well as, those obtained in brains of normal and demented individuals. Certified reference materials, NIST 1566b Oyster Tissue and NIST 1577b Bovine Liver were analyzed for quality of the analytical results.
Resumo:
Previous studies have suggested that bipolar disorder (BD) is associated with alterations in neuronal plasticity, but the effects of the progression of illness on brain anatomy have been poorly investigated. We studied the correlation between length of illness, age, age at onset, and the number of previous episodes and total brain, total gray, and total white matter volumes in BD, unipolar (UP) and healthy control (HC) subjects. Thirty-six BD, 31 UP and 55 HCs underwent a 1.5 T brain magnetic resonance imaging scan, and gray and white matter volumes were manually traced blinded to the subjects` diagnosis. Partial correlation analysis showed that length of illness was inversely correlated with total gray matter volume after adjusting for total intracranial volume in BD (r(p)=-0.51; p=0.003) but not in UP subjects (r(p)=-0.23; p=0.21). Age at illness onset and the number of previous episodes were not significantly correlated with gray matter volumes in BD or UP subjects. No significant correlation with total white matter volume was observed. These results suggest that the progression of illness may be associated with abnormal cellular plasticity. Prospective longitudinal studies are necessary to elucidate the long-term effects of illness progression on brain structure in major mood disorders. (C) 2008 Published by Elsevier B.V.
Resumo:
Objective: The aim was to compare there ulcer classification systems as predictors of the outcome of diabetic foot ulcers; the Wagner, the University of Texas (UT) and the size (area, depth), sepsis, arteriopathy, denervation system (S(AD)SAD) systems in specialist clinic in Brazil. Methods: Ulcer area, depth, appearance, infection and associated ischaemia and neuropathy were recorded in a consecutive series of 94 subjects. A novel score, the S(AD)SAD score, was derived from the sum of individual items of the S(AD)SAD system, and was evaluated. Follow-up was for at least 6 months. The primary outcome measure was the incidence of healing. Results: Mean age was 57.6 years; 57 (60.6%) were made. Forty-eight ulcers (51.1%) healed without surgery; 11 (12.2%) subjects underwent minor amputation. Significant differences in terms of healing were observed for depth (P = 0.002), infection (P = 0.006) and denervation (P = 0.002) using the S(AD)SAD system, for UT grade (P = 0.002) and stage (P = 0.032) and for Wagner grades (P = 0.002). Ulcers with an S(AD)SAD score of <= 9 (total possible 15) were 7.6 times more likely to heal than scores >= 10 (P < 0.001). Conclusions: All three systems predicted ulcer outcome. The S(AD)SAD score of ulcer severity could represent a useful addition to routine clinical practice. The association between outcome and ulcer depth confirms earlier reports. The association with infection was stronger than that reported from the centres in Europe or North America. The very strong association with neuropathy has only previously been observed in Tanzania. Studies designed to compare the outcome in different countries should adopt systems of classification, which are valid for the populations studied.
Resumo:
Background: Obsessive-compulsive disorder (OCD) is a clinically heterogenous disorder characterized by temporally stable symptom dimensions. Past inconsistent results from structural neuroimaging studies of OCD may have resulted from the effects of these specific symptom dimensions as well as other socio-demographic and clinical variables upon gray matter (GM) volume. Methods: GM volume was measured in 25 adult OCD patients and 20 adult healthy controls using voxel-based morphometry (VBM), controlling for age and total brain GM volume. Univariate and multivariate regression analyses were carried out between regions of GM difference and age, age of onset, medication load, OCD severity, depression severity, and separate symptom dimension scores. Results: Significant GM volumetric differences in OCD patients relative to controls were found in dorsal cortical regions, including bilateral BA6, BA46, BA9 and right BA8 (controls > patients), and bilateral midbrain (patients > controls). Stepwise regression analyses revealed highly significant relationships between greater total OCD symptom severity and smaller GM volumes in dorsal cortical regions and larger GM volumes in bilateral midbrain. Greater age was independently associated with smaller GM volumes in right BA6, left BA9, left BA46 and larger GM volumes in right midbrain. Greater washing symptom severity was independently associated with smaller GM volume in right BA6, while there was a trend association between greater hoarding symptom severity and lower GM volume in left BA6. Limitations: The sample was relatively small to examine the relationship between symptom scores and GM volumes. Multiple patients were taking medication and had comorbid disorders. Conclusions: These analyses suggest dorsal prefrontal cortical and bilateral midbrain GM abnormalities in OCD that appear to be primarily driven by the effects of total OCD symptom severity. The results regarding the relationship between GM volumes and symptom dimension scores require examination in larger samples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background: Decreased signal intensity in the corpus callosum, reported in adult bipolar disorder patients, has been regarded as an indicator of abnormalities in myelination. Here we compared the callosal signal intensity of children and adolescents with bipolar disorder to that of matched healthy subjects, to investigate the hypothesis that callosal myelination is abnormal in pediatric bipolar patients. Methods: Children and adolescents with DSM-lV bipolar disorder (n=16, mean age +/- S.D. = 15.5 +/- 3.4 y) and matched healthy comparison subjects (n=21, mean age +/- S.D.=16.9 3.8 y) underwent a 1.5 T MRI brain scan. Corpus callosuin signal intensity was measured using an Apple Power Mac G4 running NIH Image 1.62 software. Results: Bipolar children and adolescents had significantly lower corpus callosum signal intensity for all callosal sub-regions (genu, anterior body, posterior body, isthmus and splenium) compared to healthy subjects (ANCOVA, all p < 0.05, age and gender as covariates). Limitations: Relatively small sample size. Conclusions: Abnormalities in corpus callosum, probably due to altered myelination during neurodevelopment, may play a role in the pathophysiology of bipolar disorder among children and adolescents. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
The present study aimed to assess the reliability of intra and inter-examiner subacromial impingement index (SII) measures obtained from radiographs. Thirty-six individuals were enrolled and divided into two groups: control group, composed of 18 volunteers in good general health without shoulder problems, and a group of 18 patients with subacromial impingement syndrome (SIS). Radiographic images were taken with the dominant upper limb in neutral rotation, while the volunteers held their arm at 90A degrees of abduction in the frontal plane. The beam of radiation at 30A degrees craniocaudal inclination was used to provide an antero-posterior image view. Three blinded examiners each performed three measurements from the subacromial space (SS) and the anatomical neck of the humerus (NH). The SII was calculated as the ratio of the SS and the NH measures. The mean values of SII were compared using t-tests. The intra-class correlation coefficient (ICC) was used to assess intra- and inter-examiner reliability of the measures. The mean values of SII were greater for the control group (0.12) than for the SIS group (0.08; p = 0.0071). SII measurements showed excellent intra (0.96-0.99) and inter-examiner reliability (0.94) for both the control and SIS group. The results of this study show the potential use of the SII; a greater mean value for the control group compared to the SIS group and excellent reliability for intra- and inter-examiner measurement. Validation studies of the index should be conducted to correlate the index with clinical findings from subacromial impingement syndrome.