891 resultados para Braddock Hills
Resumo:
The Sulu Sea is located in the 'warm pool' of the western Pacific Ocean, where mean annual temperatures are the highest of anywhere on Earth. Because this large heat source supplies the atmosphere with a significant portion of its water vapour and latent heat, understanding the climate history of the region is important for reconstructing global palaeoclimate and for predicting future climate change. Changes in the oxygen isotope composition of planktonic foraminifera from Sulu Sea sediments have previously been shown to reflect changes in the planetary ice volume at glacial-interglacial and millenial timeseales, and such records have been obtained for the late Pleistocene epoch and the last deglaciation (Linsley and Thunell, 1990, doi:10.1029/PA005i006p01025; Lindley and Dunbar, 1994, doi:10.1029/93PA03216; Kudrass et al., 1991, doi:10.1038/349406a0). Here I present results that extend the millenial time resolution record back to 150,000 years before present. On timescales of around 10,000 years, the Sulu Sea oxygen-isotope record matches changes in sea level deduced from coral terraces on the Huon peninsula (Chappell and Shackleton, doi:10.1038/324137a0). This is particularly the case during isotope stage 3 (an interglacial period 23,000 to 58,000 years ago) where the Sulu Sea oxygen-isotope record deviates from the SPECMAP deep-ocean oxygen-isotope record (Imbrie et al., 1984). Thus these results support the idea (Chappell and Shackleton, doi:10.1038/324137a0; Shackleton, 1987, doi:10.1016/0277-3791(87)90003-5) that there were higher sea levels and less continental ice during stage 3 than the SPECMAP record implies and that sea level during this interglacial was just 40-50 metres below present levels. The subsequent rate of increase in continental ice volume during the return to full glacial conditions was correspondingly faster than previously thought.
Resumo:
The thermal structure of the upper ocean (0-1000 m) is set by surface heat fluxes, shallow wind-driven circulation, and the deeper thermohaline circulation. Its long-term variability can be reconstructed using deep-dwelling planktonic foraminifera that record subsurface conditions. Here we used six species (Neogloboquadrina dutertrei, Globorotalia tumida, Globorotalia inflata, Globorotalia truncatulinoides, Globorotalia hirsuta, and Globorotalia crassaformis) from 66 core tops along a meridional transect spanning the mid-Atlantic (42°N to 25°S) to develop a method for reconstructing past thermocline conditions. We estimated the calcification depths from d18O measurements and the Mg/Ca-temperature relationships for each species. This systematic strategy over this large latitudinal section reveals distinct populations with different Mg/Ca-temperature relationships for G. inflata, G. truncatulinoides, and G. hirsuta in different areas. The calcification depths do not differ among the different populations, except for G. hirsuta, where the northern population calcifies much shallower than the southern population. N. dutertrei and G. tumida show a remarkably constant calcification depth independent of oceanographic conditions. The deepest dweller, G. crassaformis, apparently calcifies in the oxygen-depleted zone, where it may find refuge from predators and abundant aggregated matter to feed on. We found a good match between its calcification depth and the 3.2 ml/l oxygen level. The results of this multispecies, multiproxy study can now be applied down-core to facilitate the reconstruction of open-ocean thermocline changes in the past.
Resumo:
High- to very-high-grade migmatitic basement rocks of the Wilson Hills area in northwestern Oates Land (Antarctica) form part of a low-pressure high-temperature belt located at the western inboard side of the Ross-orogenic Wilson Terrane. Zircon, and in part monazite, from four very-high grade migmatites (migmatitic gneisses to diatexites) and zircon from two undeformed granitic dykes from a central granulite-facies zone of the basement complex were dated by the SHRIMP U-Pb method in order to constrain the timing of metamorphic and related igneous processes and to identify possible age inheritance. Monazite from two migmatites yielded within error identical ages of 499 +/- 10 Ma and 493 +/- 9 Ma. Coexisting zircon gave ages of 500 +/- 4 Ma and 484 +/- 5 Ma for a metatexite (two age populations) and 475 +/- 4 Ma for a diatexite. Zircon populations from a migmatitic gneiss and a posttectonic granitic dyke yielded well-defined ages of 488 +/- 6 Ma and 482 +/- 4 Ma, respectively. There is only minor evidence of age inheritance in zircons of these four samples. Zircon from two other samples (metatexite, posttectonic granitic dyke) gave scattered 206Pb-238U ages. While there is a component similar in age and in low Th/U ratio to those of the other samples, inherited components with ages up to c. 3 Ga predominate. In the metatexite, a major detrital contribution from 545 - 680 Ma old source rocks can be identified. The new age data support the model that granulite- to high-amphibolite-facies metamorphism and related igneous processes in basement rocks of northwestern Oates Land were confined to a relatively short period of time of Late Cambrian to early Ordovican age. An age of approximately 500 Ma is estimated for the Ross-orogenic granulite-facies metamorphism from consistent ages of monazite from two migmatites and of the older zircon age population in one metatexite. The variably younger zircon ages are interpreted to reflect mineral formation in the course of the post-granulite-facies metamorphic evolution, which led to a widespread high-amphibolite-facies retrogression and in part late-stage formation of ms+bi assemblages in the basement rocks and which lasted until about 465 Ma. The presence of inherited zircon components of latest Neoproterozoic to Cambrian age indicates that the high- to very-grade migmatitic basement in northwestern Oates Land originated from clastic series of Cambrian age and, therefore, may well represent the deeper-crustal equivalent of lower-grade metasedimentary series of the Wilson Terrane.
Resumo:
The quantitative study of distribution and taxonomic composition of recent living and dead (without plasma) benthic foraminifers revealed three foraminiferal assemblages in bottom sediments of the Pacific Ocean at depths of 3350 to 4981 m. The assemblage dominated by epibenthic Lagenammina difflugiformis, Reophax dentaliniformis, and Saccorhiza ramose occupies slopes of underwater hills. The assemblage with a high share of infaunal Cribrostomoides subglobosum, C. nitidum, and Ammobaculites agglutinans is registered on an abyssal plateau. The assemblage with a significant proportion of large Astrorhiza and Reophax species, which are characterized by active way of life, populates gentle slopes and narrow depressions with potentially strong bottom currents.
Resumo:
In May and June 1936 Dr. C. S. Piggot of the Geophysical Laboratory, Carnegie Institution of Washington, took a series of 11 deep-sea cores in the North Atlantic Ocean between the Newfoundland banks and the banks off the Irish coast. These cores were taken from the Western Union Telegraph Co.'s cable ship Lord Kelvin with the explosive type of sounding device which Dr. Piggot designed. All but two of these cores (Nos. 8 and 11) are more than 2.43 meters (8 feet) long, and all contain ample material for study. Of the two short cores, No. 8 was taken from the top of the Faraday Hills, as that part of the mid-Atlantic ridge is known, where the material is closely packed and more sandy and consequently more resistant; No. 11 came from a locality where the apparatus apparently landed on volcanic rock that may be part of a submarine lava flow.
Resumo:
Music: p. 225-252
Resumo:
Pt. 3 by L. Lawry Waterhouse.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
Engraved ivory found in graves discovered in Los Alcores hills. cf. Pref.