Stable isotope record of planktonic foraminifera of the Atlantic Ocean


Autoria(s): Cléroux, Caroline; deMenocal, Peter B; Arbuszewski, Jennifer; Linsley, Braddock K
Cobertura

MEDIAN LATITUDE: 5.039827 * MEDIAN LONGITUDE: -26.166129 * SOUTH-BOUND LATITUDE: -25.150000 * WEST-BOUND LONGITUDE: -49.430000 * NORTH-BOUND LATITUDE: 42.850000 * EAST-BOUND LONGITUDE: -5.733000 * DATE/TIME START: 1956-09-19T00:00:00 * DATE/TIME END: 1983-03-29T00:00:00

Data(s)

14/11/2013

Resumo

The thermal structure of the upper ocean (0-1000 m) is set by surface heat fluxes, shallow wind-driven circulation, and the deeper thermohaline circulation. Its long-term variability can be reconstructed using deep-dwelling planktonic foraminifera that record subsurface conditions. Here we used six species (Neogloboquadrina dutertrei, Globorotalia tumida, Globorotalia inflata, Globorotalia truncatulinoides, Globorotalia hirsuta, and Globorotalia crassaformis) from 66 core tops along a meridional transect spanning the mid-Atlantic (42°N to 25°S) to develop a method for reconstructing past thermocline conditions. We estimated the calcification depths from d18O measurements and the Mg/Ca-temperature relationships for each species. This systematic strategy over this large latitudinal section reveals distinct populations with different Mg/Ca-temperature relationships for G. inflata, G. truncatulinoides, and G. hirsuta in different areas. The calcification depths do not differ among the different populations, except for G. hirsuta, where the northern population calcifies much shallower than the southern population. N. dutertrei and G. tumida show a remarkably constant calcification depth independent of oceanographic conditions. The deepest dweller, G. crassaformis, apparently calcifies in the oxygen-depleted zone, where it may find refuge from predators and abundant aggregated matter to feed on. We found a good match between its calcification depth and the 3.2 ml/l oxygen level. The results of this multispecies, multiproxy study can now be applied down-core to facilitate the reconstruction of open-ocean thermocline changes in the past.

Formato

application/zip, 4 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.822133

doi:10.1594/PANGAEA.822133

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Cléroux, Caroline; deMenocal, Peter B; Arbuszewski, Jennifer; Linsley, Braddock K (2013): Reconstructing the upper water column thermal structure in the Atlantic Ocean. Paleoceanography, 28(3), 503-516, doi:10.1002/palo.20050

Palavras-Chave #Age, 14C AMS; Age, 14C calibrated; Age, dated; Age, dated standard deviation; Age dated; Age std dev; Calendar years; Calendar years, standard deviation; Cal yrs; Cal yrs std dev; Depth; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Depth bot; Depth top; Event; G. truncatulinoides d d13C; G. truncatulinoides d d18O; G. tumida d13C; G. tumida d18O; Globorotalia truncatulinoides dextral, d13C; Globorotalia truncatulinoides dextral, d18O; Globorotalia tumida, d13C; Globorotalia tumida, d18O; Mass spectrometer Fisons Optima; N. dutertrei d13C; N. dutertrei d18O; Neogloboquadrina dutertrei, d13C; Neogloboquadrina dutertrei, d18O; Reference; Reference/source; Sample ID; size fraction 355-425 µm
Tipo

Dataset