933 resultados para Bipolar high-voltage pulses
Resumo:
Background: Mutations in TP53 are common events during carcinogenesis. In addition to gene mutations, several reports have focused on TP53 polymorphisms as risk factors for malignant disease. Many studies have highlighted that the status of the TP53 codon 72 polymorphism could influence cancer susceptibility. However, the results have been inconsistent and various methodological features can contribute to departures from Hardy-Weinberg equilibrium, a condition that may influence the disease risk estimates. The most widely accepted method of detecting genotyping error is to confirm genotypes by sequencing and/or via a separate method. Results: We developed two new genotyping methods for TP53 codon 72 polymorphism detection: Denaturing High Performance Liquid Chromatography (DHPLC) and Dot Blot hybridization. These methods were compared with Restriction Fragment Length Polymorphism (RFLP) using two different restriction enzymes. We observed high agreement among all methodologies assayed. Dot-blot hybridization and DHPLC results were more highly concordant with each other than when either of these methods was compared with RFLP. Conclusions: Although variations may occur, our results indicate that DHPLC and Dot Blot hybridization can be used as reliable screening methods for TP53 codon 72 polymorphism detection, especially in molecular epidemiologic studies, where high throughput methodologies are required.
Resumo:
We report a detailed numerical investigation of a prototype electrochemical oscillator, in terms of high-resolution phase diagrams for an experimentally relevant section of the control (parameter) space. The prototype model consists of a set of three autonomous ordinary differential equations which captures the general features of electrochemical oscillators characterized by a partially hidden negative differential resistance in an N-shaped current-voltage stationary curve. By computing Lyapunov exponents, we provide a detailed discrimination between chaotic and periodic phases of the electrochemical oscillator. Such phases reveal the existence of an intricate structure of domains of periodicity self-organized into a chaotic background. Shrimp-like periodic regions previously observed in other discrete and continuous systems were also observed here, which corroborate the universal nature of the occurrence of such structures. In addition, we have also found a structured period distribution within the order region. Finally we discuss the possible experimental realization of comparable phase diagrams.
Resumo:
Despite the fact that the majority of the catalytic electro-oxidation of small organic molecules presents oscillatory kinetics under certain conditions, there are few systematic studies concerning the influence of experimental parameters on the oscillatory dynamics. Of the studies available, most are devoted to C1 molecules and just some scattered data are available for C2 molecules. We present in this work a comprehensive study of the electro-oxidation of ethylene glycol on polycrystalline platinum surfaces and in alkaline media. The system was studied by means of electrochemical impedance spectroscopy, cyclic voltammetry, and chronoamperometry, and the impact of parameters such as applied current, ethylene glycol concentration, and temperature were investigated. As in the case of other parent systems, the instabilities in this system were associated with a hidden negative differential resistance, as identified by impedance data. Very rich and robust dynamics were observed, including the presence of harmonic and mixed mode oscillations and chaotic states, in some parameter region. Oscillation frequencies of about 16 Hz characterized the fastest oscillations ever reported for the electro-oxidation of small organic molecules. Those high frequencies were strongly influenced by the electrolyte pH and far less affected by the EG concentration. The system was regularly dependent on temperature under voltammetric conditions but rather independent within the oscillatory regime.
Resumo:
It has been demonstrated that laser induced breakdown spectrometry (LIBS) can be used as an alternative method for the determination of macro (P, K. Ca, Mg) and micronutrients (B, Fe, Cu, Mn, Zn) in pellets of plant materials. However, information is required regarding the sample preparation for plant analysis by LIBS. In this work, methods involving cryogenic grinding and planetary ball milling were evaluated for leaves comminution before pellets preparation. The particle sizes were associated to chemical sample properties such as fiber and cellulose contents, as well as to pellets porosity and density. The pellets were ablated at 30 different sites by applying 25 laser pulses per site (Nd:YAG@1064 nm, 5 ns, 10 Hz, 25J cm(-2)). The plasma emission collected by lenses was directed through an optical fiber towards a high resolution echelle spectrometer equipped with an ICCD. Delay time and integration time gate were fixed at 2.0 and 4.5 mu s, respectively. Experiments carried out with pellets of sugarcane, orange tree and soy leaves showed a significant effect of the plant species for choosing the most appropriate grinding conditions. By using ball milling with agate materials, 20 min grinding for orange tree and soy, and 60 min for sugarcane leaves led to particle size distributions generally lower than 75 mu m. Cryogenic grinding yielded similar particle size distributions after 10 min for orange tree, 20 min for soy and 30 min for sugarcane leaves. There was up to 50% emission signal enhancement on LIBS measurements for most elements by improving particle size distribution and consequently the pellet porosity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A green and highly sensitive analytical procedure was developed for the determination of free chlorine in natural waters, based on the reaction with N,N-diethyl-p-phenylenediamine (DPD). The flow system was designed with solenoid micro-pumps in order to improve mixing conditions by pulsed flows and to minimize reagent consumption as well as waste generation. A 100-cm optical path flow cell based on a liquid core waveguide was employed to increase sensitivity. A linear response was observed within the range 10.0 to 100.0 mu g L(-1), with the detection limit, coefficient of variation and sampling rate estimated as 6.8 mu g (99.7% confidence level), 0.9% (n = 20) and 60 determinations per hour, respectively. The consumption of the most toxic reagent (DPD) was reduced 20,000-fold and 30-fold in comparison to the batch method and flow injection with continuous reagent addition, respectively. The results for natural and tap water samples agreed with those obtained by the reference batch spectrophotometric procedure at the 95% confidence level. (C) 2010 Elsevier By. All rights reserved.
Resumo:
The aim of this work is to demonstrate the feasibility of laser induced breakdown spectrometry (LIBS) for the determination of macro and micronutrients in multielement tablets. The experimental setup was designed by using a laser Q-switch (Nd:YAG, 10 Hz, lambda = 1064 nm) and the emission signals were collected by lenses into an optical fiber coupled to an echelle spectrometer equipped with a high-resolution intensified charge coupled device (ICCD). Tablets were cryogenically ground and thereafter pelletized before LIBS analysis. Calibration curves were made by employing samples and mixtures of commercial multielement tablets with binders at different ratios. Best results were achieved by using the following experimental conditions: 29 J cm(-2) laser fluence, 165 mm lens to sample distance (f = 200 mm), 2.0 mu s delay time, 5.0 mu s integration time and 5 accumulated laser pulses. In general, the results obtained by the proposed LIBS procedure were in agreement with those obtained by ICP OES from the corresponding acid digests and coefficients variation of LIBS measurements varied from 2 to 16%. The metrological figures of merit indicate that LIBS fits for the intended purposes, and can be recommended for the analysis of multielement tablets and similar matrices aiming the determination of Ca, Cu, Fe, Mg, Mn, P and Zn.
Resumo:
A simultaneous optimization strategy based on a neuro-genetic approach is proposed for selection of laser induced breakdown spectroscopy operational conditions for the simultaneous determination of macronutrients (Ca, Mg and P), micro-nutrients (B, Cu, Fe, Mn and Zn), Al and Si in plant samples. A laser induced breakdown spectroscopy system equipped with a 10 Hz Q-switched Nd:YAG laser (12 ns, 532 nm, 140 mJ) and an Echelle spectrometer with intensified coupled-charge device was used. Integration time gate, delay time, amplification gain and number of pulses were optimized. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. In order to find a model that could correlate laser induced breakdown spectroscopy operational conditions with compromised high peak areas of all elements simultaneously, a Bayesian Regularized Artificial Neural Network approach was employed. Subsequently, a genetic algorithm was applied to find optimal conditions for the neural network model, in an approach called neuro-genetic, A single laser induced breakdown spectroscopy working condition that maximizes peak areas of all elements simultaneously, was obtained with the following optimized parameters: 9.0 mu s integration time gate, 1.1 mu s delay time, 225 (a.u.) amplification gain and 30 accumulated laser pulses. The proposed approach is a useful and a suitable tool for the optimization process of such a complex analytical problem. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Voltage-gated sodium channels have been implicated in acute and chronic neuropathic pain. Among subtypes, Nav1.7 single mutations can cause congenital indifference to pain or chronic neuropathic pain syndromes, including paroxysmal ones. This channel is co-expressed with Nav1.8, which sustains the initial action potential; Nav1.3 is an embrionary channel which is expressed in neurons after injury, as in neuropathic conditions. Few studies are focused on the expression of these molecules in human tissues having chronic pain. Trigeminal neuralgia (TN) is an idiopathic paroxysmal pain treated with sodium channel blockers. The aim of this study was to investigate the expression of Nav1.3, Nav1.7 and Nav1.8 by RT-PCR in patients with TN, compared to controls. The gingival tissue was removed from the correspondent trigeminal area affected. We found that Nav1.7 was downregulated in TN (P=0.017) and Nav1.3 was upregulated in these patients (P=0.043). We propose a physiopathological mechanism for these findings. Besides vascular compression of TN, this disease might be also a channelopathy. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
METHODS: A total of 4210 students attending public high schools in Pernambuco (northeast of Brazil) were selected using random 2-stage cluster sampling. Data were collected by using the Global School-based Student Health Survey. The independent variable was the frequency of participation in PE classes, whereas physical activity, television viewing, smoking, and alcohol, fruit, vegetables and soda consumption were dependent variables. Logistic regressions were carried out to perform crude and adjusted analysis of the association between enrollment in PE classes and health-related behaviors. RESULTS: Sixty-five percent of students do not take part in PE classes, with a significantly higher proportion among females (67.8%). It was observed that enrollment in PE classes was positively associated with physical activity, TV viewing, and fruit consumption, but was negatively associated with soda drinking. The likelihood of reporting being active and eating fruit on a daily basis was 27% and 45% higher, respectively, among those who participate in at least 2 classes per week in comparison with those who do not. Students who participate in PE classes had 28-30% higher likelihood of reporting lower TV viewing during week days. CONCLUSIONS: Findings suggest that higher levels of enrollment in PE classes could play a role in the promotion of health-related behaviors among high school students.
Resumo:
Background/Aims: To investigate the association between cortisol levels, chronic stress and coping in subjects with amnestic-type mild cognitive impairment (aMCI). Methods: Cortisol levels were measured using morning saliva samples from 33 individuals with aMCI and from 41 healthy elderly. Chronic stress was evaluated with the Stress Symptoms List (SSL), whereas coping strategies were assessed using the Jalowiec Coping Scale. Results: aMCI subjects with high SSL scores presented higher cortisol levels (p = 0.045). Furthermore, aMCI subjects who employed emotion-focused coping had higher SSL scores (p = 0.023). Conclusion: The association between increased cortisol secretion, chronic stress and coping strategies may be modulated by the presence or absence of cognitive impairment, where memory deficit awareness constitutes an additional potential factor involved in high stress severity. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Evidence demonstrates that sympathetic nervous system (SNS) activation causes osteopenia via beta(2)-adrenoceptor (beta(2)-AR) signaling. Here we show that female mice with chronic sympathetic hyperactivity owing to double knockout of adrenoceptors that negatively regulate norepinephrine release, alpha(2A)-AR and alpha(2C)-AR(alpha(2A)/alpha(2C)-ARKO), present an unexpected and generalized phenotype of high bone mass with decreased bone resorption and increased formation. In alpha(2A)/alpha(2C)-ARKO versus wild-type (WT) mice, micro-computed tomographic (mu CT) analysis showed increased, better connected, and more plate-shaped trabeculae in the femur and vertebra and increased cortical thickness in the vertebra, whereas biomechanical analysis showed increased tibial and femoral strength. Tibial mRNA expression of tartrate-resistant acid phosphatase (TRACP) and receptor activator of NF-kappa B (RANK), which are osteoclast-related factors, was lower in knockout (KO) mice. Plasma leptin and brain mRNA levels of cocaine amphetamine-regulated transcript (CART), which are factors that centrally affect bone turnover, and serum levels of estradiol were similar between mice strains. Tibial beta(2)-AR mRNA expression also was similar in KO and WT littermates, whereas alpha(2A)-, alpha(2B)- and alpha(2C)-AR mRNAs were detected in the tibia of WT mice and in osteoblast-like MC3T3-E1 cells. By immunohistochemistry, we detected alpha(2A)-, alpha(2B)-, alpha(2C)- and beta(2)-ARs in osteoblasts, osteoclasts, and chondrocytes of 18.5-day-old mouse fetuses and 35-day-old mice. Finally, we showed that isolated osteoclasts in culture are responsive to the selective alpha(2)-AR agonist clonidine and to the nonspecific alpha-AR antagonist phentolamine. These findings suggest that beta(2)-AR is not the single adrenoceptor involved in bone turnover regulation and show that alpha(2)-AR signaling also may mediate the SNS actions in the skeleton. (c) 2011 American Society for Bone and Mineral Research.
Resumo:
Exercise intensity is a key parameter for exercise prescription but the optimal range for individuals with high cardiorespiratory fitness is unknown. The aims of this study were (1) to determine optimal heart rate ranges for men with high cardiorespiratory fitness based on percentages of maximal oxygen consumption (%VO(2max)) and reserve oxygen consumption (%VO(2reserve)) corresponding to the ventilatory threshold and respiratory compensation point, and ( 2) to verify the effect of advancing age on the exercise intensities. Maximal cardiorespiratory testing was performed on 210 trained men. Linear regression equations were calculated using paired data points between percentage of maximal heart rate (%HR(max)) and %VO(2max) and between percentage of heart rate reserve (%HRR) and %VO(2reserve) attained at each minute during the test. Values of %VO(2max) and %VO(2reserve) at the ventilatory threshold and respiratory compensation point were used to calculate the corresponding values of %HRmax and %HRR, respectively. The ranges of exercise intensity in relation to the ventilatory threshold and respiratory compensation point were achieved at 78-93% of HR(max) and 70-93% of HRR, respectively. Although absolute heart rate decreased with advancing age, there were no age-related differences in %HR(max) and %HRR at the ventilatory thresholds. Thus, in men with high cardiorespiratory fitness, the ranges of exercise intensity based on %HR(max) and %HRR regarding ventilatory threshold were 78-93% and 70-93% respectively, and were not influenced by advancing age.
Resumo:
The purpose of this study was to investigate the effects of a short-term low-or high-carbohydrate (CHO) diet consumed after exercise on sympathetic nervous system activity. Twelve healthy males underwent a progressive incremental test; a control measurement of plasma catecholamines and heart rate variability (HRV); an exercise protocol to reduce endogenous CHO stores; a low-or high-CHO diet (counterbalanced order) consumed for 2 days, beginning immediately after the exercise protocol; and a second resting plasma catecholamine and HRV measurement. The exercise and diet protocols and the second round of measurements were performed again after a 1-week washout period. The mean (+/- SD) values of the standard deviation of R-R intervals were similar between conditions (control, 899.0 +/- 146.1 ms; low-CHO diet, 876.8 +/- 115.8 ms; and high-CHO diet, 878.7 +/- 127.7 ms). The absolute high-and low-frequency (HF and LF, respectively) densities of the HRV power spectrum were also not different between conditions. However, normalized HF and LF (i.e., relative to the total power spectrum) were lower and higher, respectively, in the low-CHO diet than in the control diet (mean +/- SD, 17 +/- 9 normalized units (NU) and 83 +/- 9 NU vs. 27 +/- 11 NU and 73 +/- 17 NU, respectively; p < 0.05). The LF/HF ratio was higher with the low-CHO diet than with the control diet (mean +/- SD, 7.2 +/- 6.2 and 4.2 +/- 3.2, respectively; p < 0.05). The mean values of plasma catecholamines were not different between diets. These results suggest that the autonomic control of the heart rate was modified after a short-term low-CHO diet, but plasma catecholamine levels were not altered.
Acute high-intensity exercise with low energy expenditure reduced LDL-c and total cholesterol in men
Resumo:
A reduction in LDL cholesterol and an increase in HDL cholesterol levels are clinically relevant parameters for the treatment of dyslipidaemia, and exercise is often recommended as an intervention. This study aimed to examine the effects of acute, high-intensity exercise (similar to 90% VO(2max)) and varying carbohydrate levels (control, low and high) on the blood lipid profile. Six male subjects were distributed randomly into exercise groups, based on the carbohydrate diets (control, low and high) to which the subjects were restricted before each exercise session. The lipid profile (triglycerides, VLDL, HDL cholesterol, LDL cholesterol and total cholesterol) was determined at rest, and immediately and 1 h after exercise bouts. There were no changes in the time exhaustion (8.00 +/- A 1.83; 7.82 +/- A 2.66; and 9.09 +/- A 3.51 min) and energy expenditure (496.0 +/- A 224.8; 411.5 +/- A 223.1; and 592.1 +/- A 369.9 kJ) parameters with the three varying carbohydrate intake (control, low and high). Glucose and insulin levels did not show time-dependent changes under the different conditions (P > 0.05). Total cholesterol and LDL cholesterol were reduced after the exhaustion and 1 h recovery periods when compared with rest periods only in the control carbohydrate intake group (P < 0.05), although this relation failed when the diet was manipulated. These results indicate that acute, high-intensity exercise with low energy expenditure induces changes in the cholesterol profile, and that influences of carbohydrate level corresponding to these modifications fail when carbohydrate (low and high) intake is manipulated.
Resumo:
The aim of this study was to determine if the carbohydrate (CHO) availability alters the rate of increase in the rating of perceived exertion (RPE) during high intensity exercise and whether this would be associated with physiological changes. Six males performed high intensity exercise after 48 h of controlled, high CHO (80%) and low CHO (10%) diets. Time to exhaustion was lower in the low compared to high CHO diet. The rate of increase in RPE was greater and the VO(2) slow component was lower in the low CHO diet than in the control. There was no significant condition effect for cortisol, insulin, pH, plasma glucose, potassium, or lactate concentrations. Multiple linear regression indicated that the total amplitude of VO(2) and perceived muscle strain accounted for the greatest variance in the rate of increase in RPE. These results suggest that cardiorespiratory variables and muscle strain are important afferent signals from the periphery for the RPE calculations.