878 resultados para Binary linear programming (BLP)
Resumo:
The purpose of this study was to investigate the association between temperament in Australian infants aged 2–7 months and feeding practices of their first-time mothers (n=698). Associations between feeding practices and beliefs (Infant Feeding Questionnaire) and infant temperament (easy-difficult continuous scale from the Short Temperament Scale for Infants) were tested using linear and binary logistic regression models adjusted for a comprehensive range of covariates. Mothers of infants with a more difficult temperament reported a lower awareness of infant cues, were more likely to use food to calm and reported high concern about overweight and underweight. The covariate maternal depression score largely mirrored these associations. Infant temperament may be an important variable to consider in future research on the prevention of childhood obesity. In practice, mothers of temperamentally difficult infants may need targeted feeding advice to minimise the adoption of undesirable feeding practices.
Resumo:
This paper presents a combined structure for using real, complex, and binary valued vectors for semantic representation. The theory, implementation, and application of this structure are all significant. For the theory underlying quantum interaction, it is important to develop a core set of mathematical operators that describe systems of information, just as core mathematical operators in quantum mechanics are used to describe the behavior of physical systems. The system described in this paper enables us to compare more traditional quantum mechanical models (which use complex state vectors), alongside more generalized quantum models that use real and binary vectors. The implementation of such a system presents fundamental computational challenges. For large and sometimes sparse datasets, the demands on time and space are different for real, complex, and binary vectors. To accommodate these demands, the Semantic Vectors package has been carefully adapted and can now switch between different number types comparatively seamlessly. This paper describes the key abstract operations in our semantic vector models, and describes the implementations for real, complex, and binary vectors. We also discuss some of the key questions that arise in the field of quantum interaction and informatics, explaining how the wide availability of modelling options for different number fields will help to investigate some of these questions.
Resumo:
Trivium is a keystream generator for a binary additive synchronous stream cipher. It was selected in the final portfolio for the Profile 2 category of the eSTREAM project. The keystream generator is constructed using bit- based shift registers. In this paper we present an alternate representation of Trivium using word-based shift registers, with a word size of three bits. This representation is useful for determining cycles of internal state values. Under this representation it is clear that the state space can be partitioned into subspaces and that over some of these subspaces the state update function is effectively linear. The role of the initialization process is critical in ensuring the states used for generating keystream are updated nonlinearly at some point, as the state update function alone does not provide this.
Resumo:
In this paper, we present the outcomes of a project on the exploration of the use of Field Programmable Gate Arrays(FPGAs) as co-processors for scientific computation. We designed a custom circuit for the pipelined solving of multiple tri-diagonal linear systems. The design is well suited for applications that require many independent tri diagonal system solves, such as finite difference methods for solving PDEs or applications utilising cubic spline interpolation. The selected solver algorithm was the Tri Diagonal Matrix Algorithm (TDMA or Thomas Algorithm). Our solver supports user specified precision thought the use of a custom floating point VHDL library supporting addition, subtraction, multiplication and division. The variable precision TDMA solver was tested for correctness in simulation mode. The TDMA pipeline was tested successfully in hardware using a simplified solver model. The details of implementation, the limitations, and future work are also discussed.
Resumo:
The act of computer programming is generally considered to be temporally removed from a computer program's execution. In this paper we discuss the idea of programming as an activity that takes place within the temporal bounds of a real-time computational process and its interactions with the physical world. We ground these ideas within the con- text of livecoding -- a live audiovisual performance practice. We then describe how the development of the programming environment "Impromptu" has addressed our ideas of programming with time and the notion of the programmer as an agent in a cyber-physical system.
Resumo:
The act of computer programming is generally considered to be temporally removed from a computer program’s execution. In this paper we discuss the idea of programming as an activity that takes place within the temporal bounds of a real-time computational process and its interactions with the physical world. We ground these ideas within the context of livecoding – a live audiovisual performance practice. We then describe how the development of the programming environment “Impromptu” has addressed our ideas of programming with time and the notion of the programmer as an agent in a cyber-physical system.
Resumo:
It is acknowledged around the world that many university students struggle with learning to program (McCracken et al., 2001; McGettrick et al., 2005). In this paper, we describe how we have developed a research programme to systematically study and incrementally improve our teaching. We have adopted a research programme with three elements: (1) a theory that provides an organising framework for defining the type of phenomena and data of interest, (2) data on how the class as a whole performs on formative assessment tasks that are framed from within the organising framework, and (3) data from one-on-one think aloud sessions, to establish why students struggle with some of those in-class formative assessment tasks. We teach introductory computer programming, but this three-element structure of our research is applicable to many areas of engineering education research.
Resumo:
In this paper, we present the outcomes of a project on the exploration of the use of Field Programmable Gate Arrays (FPGAs) as co-processors for scientific computation. We designed a custom circuit for the pipelined solving of multiple tri-diagonal linear systems. The design is well suited for applications that require many independent tri-diagonal system solves, such as finite difference methods for solving PDEs or applications utilising cubic spline interpolation. The selected solver algorithm was the Tri-Diagonal Matrix Algorithm (TDMA or Thomas Algorithm). Our solver supports user specified precision thought the use of a custom floating point VHDL library supporting addition, subtraction, multiplication and division. The variable precision TDMA solver was tested for correctness in simulation mode. The TDMA pipeline was tested successfully in hardware using a simplified solver model. The details of implementation, the limitations, and future work are also discussed.
Resumo:
In 1991, McNabb introduced the concept of mean action time (MAT) as a finite measure of the time required for a diffusive process to effectively reach steady state. Although this concept was initially adopted by others within the Australian and New Zealand applied mathematics community, it appears to have had little use outside this region until very recently, when in 2010 Berezhkovskii and coworkers rediscovered the concept of MAT in their study of morphogen gradient formation. All previous work in this area has been limited to studying single–species differential equations, such as the linear advection–diffusion–reaction equation. Here we generalise the concept of MAT by showing how the theory can be applied to coupled linear processes. We begin by studying coupled ordinary differential equations and extend our approach to coupled partial differential equations. Our new results have broad applications including the analysis of models describing coupled chemical decay and cell differentiation processes, amongst others.
Resumo:
Linear adaptive channel equalization using the least mean square (LMS) algorithm and the recursive least-squares(RLS) algorithm for an innovative multi-user (MU) MIMOOFDM wireless broadband communications system is proposed. The proposed equalization method adaptively compensates the channel impairments caused by frequency selectivity in the propagation environment. Simulations for the proposed adaptive equalizer are conducted using a training sequence method to determine optimal performance through a comparative analysis. Results show an improvement of 0.15 in BER (at a SNR of 16 dB) when using Adaptive Equalization and RLS algorithm compared to the case in which no equalization is employed. In general, adaptive equalization using LMS and RLS algorithms showed to be significantly beneficial for MU-MIMO-OFDM systems.
Resumo:
Significant wheel-rail dynamic forces occur because of imperfections in the wheels and/or rail. One of the key responses to the transmission of these forces down through the track is impact force on the sleepers. Dynamic analysis of nonlinear systems is very complicated and does not lend itself easily to a classical solution of multiple equations. Trying to deduce the behaviour of track components from experimental data is very difficult because such data is hard to obtain and applies to only the particular conditions of the track being tested. The finite element method can be the best solution to this dilemma. This paper describes a finite element model using the software package ANSYS for various sized flat defects in the tread of a wheel rolling at a typical speed on heavy haul track. The paper explores the dynamic response of a prestressed concrete sleeper to these defects.
Resumo:
Student performance on examinations is influenced by the level of difficulty of the questions. It seems reasonable to propose therefore that assessment of the difficulty of exam questions could be used to gauge the level of skills and knowledge expected at the end of a course. This paper reports the results of a study investigating the difficulty of exam questions using a subjective assessment of difficulty and a purpose-built exam question complexity classification scheme. The scheme, devised for exams in introductory programming courses, assesses the complexity of each question using six measures: external domain references, explicitness, linguistic complexity, conceptual complexity, length of code involved in the question and/or answer, and intellectual complexity (Bloom level). We apply the scheme to 20 introductory programming exam papers from five countries, and find substantial variation across the exams for all measures. Most exams include a mix of questions of low, medium, and high difficulty, although seven of the 20 have no questions of high difficulty. All of the complexity measures correlate with assessment of difficulty, indicating that the difficulty of an exam question relates to each of these more specific measures. We discuss the implications of these findings for the development of measures to assess learning standards in programming courses.
Resumo:
Recent research has proposed Neo-Piagetian theory as a useful way of describing the cognitive development of novice programmers. Neo-Piagetian theory may also be a useful way to classify materials used in learning and assessment. If Neo-Piagetian coding of learning resources is to be useful then it is important that practitioners can learn it and apply it reliably. We describe the design of an interactive web-based tutorial for Neo-Piagetian categorization of assessment tasks. We also report an evaluation of the tutorial's effectiveness, in which twenty computer science educators participated. The average classification accuracy of the participants on each of the three Neo-Piagetian stages were 85%, 71% and 78%. Participants also rated their agreement with the expert classifications, and indicated high agreement (91%, 83% and 91% across the three Neo-Piagetian stages). Self-rated confidence in applying Neo-Piagetian theory to classifying programming questions before and after the tutorial were 29% and 75% respectively. Our key contribution is the demonstration of the feasibility of the Neo-Piagetian approach to classifying assessment materials, by demonstrating that it is learnable and can be applied reliably by a group of educators. Our tutorial is freely available as a community resource.
Resumo:
Recent advances in the planning and delivery of radiotherapy treatments have resulted in improvements in the accuracy and precision with which therapeutic radiation can be administered. As the complexity of the treatments increases it becomes more difficult to predict the dose distribution in the patient accurately. Monte Carlo methods have the potential to improve the accuracy of the dose calculations and are increasingly being recognised as the “gold standard” for predicting dose deposition in the patient. In this study, software has been developed that enables the transfer of treatment plan information from the treatment planning system to a Monte Carlo dose calculation engine. A database of commissioned linear accelerator models (Elekta Precise and Varian 2100CD at various energies) has been developed using the EGSnrc/BEAMnrc Monte Carlo suite. Planned beam descriptions and CT images can be exported from the treatment planning system using the DICOM framework. The information in these files is combined with an appropriate linear accelerator model to allow the accurate calculation of the radiation field incident on a modelled patient geometry. The Monte Carlo dose calculation results are combined according to the monitor units specified in the exported plan. The result is a 3D dose distribution that could be used to verify treatment planning system calculations. The software, MCDTK (Monte Carlo Dicom ToolKit), has been developed in the Java programming language and produces BEAMnrc and DOSXYZnrc input files, ready for submission on a high-performance computing cluster. The code has been tested with the Eclipse (Varian Medical Systems), Oncentra MasterPlan (Nucletron B.V.) and Pinnacle3 (Philips Medical Systems) planning systems. In this study the software was validated against measurements in homogenous and heterogeneous phantoms. Monte Carlo models are commissioned through comparison with quality assurance measurements made using a large square field incident on a homogenous volume of water. This study aims to provide a valuable confirmation that Monte Carlo calculations match experimental measurements for complex fields and heterogeneous media.