984 resultados para Basis functions
Resumo:
T cells play a primordial role in antiviral immunity. Virus-specific T-cell responses can be characterized by a number of independent variables. These include the magnitude of the response; the functional quality of the response, i.e. the types of cytokines secreted after stimulation and the proliferative or lytic potential; the tissue distribution of the T cells; the breadth of the response; and the avidity of the response. All of these together constitute the T-cell response to antigen (Ag) and comprise potential variables that may correlate with antiviral protective immunity. Substantial advances have recently been obtained in the characterization of virus-specific T-cell responses. These studies have shown that the quality (in term of functional profile) rather than the quantity of Ag-specific T cells was associated with protection. Recently, the term polyfunctional has been used to define T-cell responses that, in addition to typical effector functions such as secretion of IFN-g, TNF-a and MIP-1b and cytotoxic activity, comprise distinct T-cell populations, also able to secrete IL-2 and retaining Ag-specific proliferation capacity. The term \only effector" defines T-cell responses/ populations able to secrete cytokines such as IFN-g, TNF-a and MIP-1b and endowed with cytotoxic activity but lacking IL-2 and proliferation capacity. Several models of virus infections (HIV-1, cytomegalovirus [CMV], Epstein Barr virus [EBV], influenza [Flu] and Herpes Simplex virus) exclusively differentiated on the basis of Ag exposure and persistence, were investigated: 1) antigen clearance, 2) protracted Ag exposure and persistence and low Ag levels, 3) Ag persistence and high Ag levels, and 4) acute Ag exposure/re-exposure. These analyses have demonstrated that polyfunctional and not \only effector" T-cell responses were associated with protective antiviral immunity. However, the factors and mechanisms governing the generation of functionally distinct T-cell populations remain to be elucidated. Recently, several studies have shown a major influence of HLA genotype in the evolution of HIV and the progression of HIV-associated disease. In particular, certain HLA-B alleles were most closely associated with non-progressive disease and low viral load or disease and had a dominant involvement on the clinical course of HIV-associated diseases. In this study, we have investigated the relationship between HLA restriction and the functional profile of Tcell responses in order to determine whether HLA-B influenced the generation of polyfunctional CD8 T-cell responses. To be able to address this issue, we studied CD8 T-cell responses against HIV-1, CMV, EBV and Flu in 128 subjects. These analyses enabled us to demonstrate that HLA-Arestricted epitopes were mostly associated with \only effector" T-cell responses while, in contrast, polyfunctional CD8 T-cell responses were predominantly driven by virus epitopes restricted by HLA-B alleles. We then characterized eventual differences in the responsiveness of CD8 T-cell populations restricted by different HLA-A and HLA-B alleles. For this purpose, we investigated the T-cell receptor (TCR) avidity for the cognate epitope of polyfunctional and \only effector" CD8 T-cell populations. Our results indicated that overall virus-specific CD8 T-cell populations recognizing virus epitopes restricted by HLA-B alleles were equipped with lower avidity TCR for the cognate epitopes when compared to those recognizing epitopes restricted by HLA-A alleles. In conclusion, these results provide the rationale for the observed protective role of HLA-B genotypes in HIV-1- infection and new insights into the relationship between TCR avidity and functional profile of virus-specific CD8 Tcells.
Resumo:
The peroxisome proliferator-activated receptors (PPARs) are fatty acid and eicosanoid inducible nuclear receptors, which occur in three different isotypes. Upon activator binding, they modulate the expression of various target genes implicated in several important physiological pathways. During the past few years, the identification of both PPAR ligands, natural and synthetic, and PPAR targets and their associated functions has been one of the most important achievements in the field. It underscores the potential therapeutic application of PPAR-specific compounds on the one side, and the crucial biological roles of endogenous PPAR ligands on the other.
Resumo:
After antigenic challenge, naive T lymphocytes enter a program of proliferation and differentiation during the course of which they acquire effector functions and may ultimately become memory cells. In humans, the pathways of effector and memory T-cell differentiation remain poorly defined. Here we describe the properties of 2 CD8+ T-lymphocyte subsets, RA+CCR7-27+28+ and RA+CCR7-27+28-, in human peripheral blood. These cells display phenotypic and functional features that are intermediate between naive and effector T cells. Like naive T lymphocytes, both subsets show relatively long telomeres. However, unlike the naive population, these T cells exhibit reduced levels of T-cell receptor excision circles (TRECs), indicating they have undergone additional rounds of in vivo cell division. Furthermore, we show that they also share effector-type properties. At equivalent in vivo replicative history, the 2 subsets express high levels of Fas/CD95 and CD11a, as well as increasing levels of effector mediators such as granzyme B, perforin, interferon gamma, and tumor necrosis factor alpha. Both display partial ex vivo cytolytic activity and can be found among cytomegalovirus-specific cytolytic T cells. Taken together, our data point to the presence of T cells with intermediate effector-like functions and suggest that these subsets consist of T lymphocytes that are evolving toward a more differentiated effector or effector-memory stage.
Resumo:
Endocrine disruption is defined as the perturbation of the endocrine system, which includes disruption of nuclear hormone receptor signalling. Peroxisome proliferator-activated receptors (PPARs) represent a family of nuclear receptors that has not yet been carefully studied with regards to endocrine disruption, despite the fact that PPARs are known to be important targets for xenobiotics. Here we report a first comprehensive approach aimed at defining the mechanistic basis of PPAR disruption focusing on one chemical, the plasticizer monethylhexyl phthalate (MEHP), but using a variety of methodologies and models. We used mammalian cells and a combination of biochemical and live cell imaging techniques to show that MEHP binds to PPAR gamma and selectively regulates interactions with coregulators. Micro-array experiments further showed that this selectivity is translated at the physiological level during adipocyte differentiation. In that context, MEHP functions as a selective PPAR modulator regulating only a subset of PPAR gamma target genes compared to the action of a full agonist. We also explored the action of MEHP on PPARs in an aquatic species, Xenopus laevis, as many xenobiotics are found in aquatic ecosystems. In adult males, micro-array data indicated that MEHP influences liver physiology, possibly through a cross-talk between PPARs and estrogen receptors (ER). In early Xenopus laevis embryos, we showed that PPAR beta/delta exogenous activation by an agonist or by MEHP affects development. Taken together our results widen the concept of endocrine disruption by pinpointing PPARs as key factors in that process.
Resumo:
In contrast with the low frequency of most single epitope reactive T cells in the preimmune repertoire, up to 1 of 1,000 naive CD8(+) T cells from A2(+) individuals specifically bind fluorescent A2/peptide multimers incorporating the A27L analogue of the immunodominant 26-35 peptide from the melanocyte differentiation and melanoma associated antigen Melan-A. This represents the only naive antigen-specific T cell repertoire accessible to direct analysis in humans up to date. To get insight into the molecular basis for the selection and maintenance of such an abundant repertoire, we analyzed the functional diversity of T cells composing this repertoire ex vivo at the clonal level. Surprisingly, we found a significant proportion of multimer(+) clonotypes that failed to recognize both Melan-A analogue and parental peptides in a functional assay but efficiently recognized peptides from proteins of self- or pathogen origin selected for their potential functional cross-reactivity with Melan-A. Consistent with these data, multimers incorporating some of the most frequently recognized peptides specifically stained a proportion of naive CD8(+) T cells similar to that observed with Melan-A multimers. Altogether these results indicate that the high frequency of Melan-A multimer(+) T cells can be explained by the existence of largely cross-reactive subsets of naive CD8(+) T cells displaying multiple specificities.
Resumo:
A workshop recently held at the Ecole Polytechnique Federale de Lausanne (EPFL, Switzerland) was dedicated to understanding the genetic basis of adaptive change, taking stock of the different approaches developed in theoretical population genetics and landscape genomics and bringing together knowledge accumulated in both research fields. Indeed, an important challenge in theoretical population genetics is to incorporate effects of demographic history and population structure. But important design problems (e.g. focus on populations as units, focus on hard selective sweeps, no hypothesis-based framework in the design of the statistical tests) reduce their capability of detecting adaptive genetic variation. In parallel, landscape genomics offers a solution to several of these problems and provides a number of advantages (e.g. fast computation, landscape heterogeneity integration). But the approach makes several implicit assumptions that should be carefully considered (e.g. selection has had enough time to create a functional relationship between the allele distribution and the environmental variable, or this functional relationship is assumed to be constant). To address the respective strengths and weaknesses mentioned above, the workshop brought together a panel of experts from both disciplines to present their work and discuss the relevance of combining these approaches, possibly resulting in a joint software solution in the future.
Resumo:
Abstract
Resumo:
[eng] In this paper we claim that capital is as important in the production of ideas as in the production of final goods. Hence, we introduce capital in the production of knowledge and discuss the associated problems arising from the public good nature of knowledge. We show that although population growth can affect economic growth, it is not necessary for growth to arise. We derive both the social planner and the decentralized economy growth rates and show the optimal subsidy that decentralizes it. We also show numerically that the effects of population growth on the market growth rate, the optimal growth rate and the optimal subsidy are small. Besides, we find that physical capital is more important for the production of knowledge than for the production of goods.
Resumo:
[eng] In this paper we claim that capital is as important in the production of ideas as in the production of final goods. Hence, we introduce capital in the production of knowledge and discuss the associated problems arising from the public good nature of knowledge. We show that although population growth can affect economic growth, it is not necessary for growth to arise. We derive both the social planner and the decentralized economy growth rates and show the optimal subsidy that decentralizes it. We also show numerically that the effects of population growth on the market growth rate, the optimal growth rate and the optimal subsidy are small. Besides, we find that physical capital is more important for the production of knowledge than for the production of goods.
Resumo:
Linear spaces consisting of σ-finite probability measures and infinite measures (improper priors and likelihood functions) are defined. The commutative group operation, called perturbation, is the updating given by Bayes theorem; the inverse operation is the Radon-Nikodym derivative. Bayes spaces of measures are sets of classes of proportional measures. In this framework, basic notions of mathematical statistics get a simple algebraic interpretation. For example, exponential families appear as affine subspaces with their sufficient statistics as a basis. Bayesian statistics, in particular some well-known properties of conjugated priors and likelihood functions, are revisited and slightly extended
Resumo:
The three peroxisome proliferator-activated receptors (PPAR alpha, PPAR beta, and PPAR gamma) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. They are regarded as being sensors of physiological levels of fatty acids and fatty acid derivatives. In the adult mouse skin, they are found in hair follicle keratinocytes but not in interfollicular epidermis keratinocytes. Skin injury stimulates the expression of PPAR alpha and PPAR beta at the site of the wound. Here, we review the spatiotemporal program that triggers PPAR beta expression immediately after an injury, and then gradually represses it during epithelial repair. The opposing effects of the tumor necrosis factor-alpha and transforming growth factor-beta-1 signalling pathways on the activity of the PPAR beta promoter are the key elements of this regulation. We then compare the involvement of PPAR beta in the skin in response to an injury and during hair morphogenesis, and underscore the similarity of its action on cell survival in both situations.
Resumo:
(from the journal abstract) Schizophrenia, a major psychiatric disease, affects individuals in the centre of their personality. Its aetiology is not clearly established. In this review, we will present evidence that patients suffering of schizophrenia present a brain deficit in glutathione, a major endogenous redox regulator and antioxidant. We will also show that, in experimental models, a decrease in glutathione, particularly during development, induces morphological, electrophysiological and behavioural anomalies consistent with those observed in the disease. In the cerebrospinal fluid of drug-naive schizophrenics, glutathione level was decreased by 27% and its direct metabolite of glutathione by 16%. Glutathione level in prefrontal cortex of patients, measured by magnetic resonance spectroscopy, was 52% lower than in controls. Patients' fibroblasts reveal a decrease in mRNA levels of the two glutathione synthesising enzymes, glutamatecysteine ligase modulatory subunit (GCLM) and glutathione synthetase. GCLM expression level in fibroblasts correlates negatively with symptoms severity. Glutathione is an important endogenous redox regulator and neuroactive substance. It is protecting cells from damage by reactive oxygen species generated, among others, by dopamine metabolism. A glutathione deficit-induced oxidative stress would lead to lipid peroxidation and micro-lesions at the level of dendritic spines, a synaptic damage responsible for abnormal nervous connections or structural disconnectivity. On the other hand, a glutathione deficit could also lead to a functional disconnectivity by depressing NMDA neurotransmission, in analogy to phencyclidine effects. Present experimental data are consistent with the proposed hypothesis: decreasing pharmacologically glutathione level in experimental models, with or without blocking dopamine (DA) uptake (GBR12909), induces morphological, electrophysiological and behavioural changes similar to those observed in patients. In summary, a deficit of glutathione and/or glutathione-related enzymes during early development would lead to both a functional and a structural disconnectivity, which could be at the basis of some perceptive, cognitive and behavioural troubles of the disease. It could constitute a major vulnerability factor for schizophrenia. Attempts to restore physiological glutathione functions could open new therapeutic avenues. This translational research, made possible by a close interaction between clinicians and neuroscientists, should also pave the way to the identification of biological markers for schizophrenia. In turn, they should allow early diagnostic and hopefully preventive intervention to this devastating disease. (PsycINFO Database Record (c) 2005 APA, all rights reserved)
Resumo:
Although dermatophytes are the most common agents of superficial mycoses in humans and animals, the molecular basis of the pathogenicity of these fungi is largely unknown. In vitro digestion of keratin by dermatophytes is associated with the secretion of multiple proteases, which are assumed to be responsible for their particular specialization to colonize and degrade keratinized host structures during infection. To investigate the role of individual secreted proteases in dermatophytosis, a guinea pig infection model was established for the zoophilic dermatophyte Arthroderma benhamiae, which causes highly inflammatory cutaneous infections in humans and rodents. By use of a cDNA microarray covering approximately 20-25 % of the A. benhamiae genome and containing sequences of at least 23 protease genes, we revealed a distinct in vivo protease gene expression profile in the fungal cells, which was surprisingly different from the pattern elicited during in vitro growth on keratin. Instead of the major in vitro -expressed proteases, others were activated specifically during infection. These enzymes are therefore suggested to fulfil important functions that are not exclusively associated with the degradation of keratin. Most notably, the gene encoding the serine protease subtilisin 6, which is a known major allergen in the related dermatophyte Trichophyton rubrum and putatively linked to host inflammation, was found to be the most strongly upregulated gene during infection. In addition, our approach identified other candidate pathogenicity-related factors in A. benhamiae, such as genes encoding key enzymes of the glyoxylate cycle and an opsin-related protein. Our work provides what we believe to be the first broad-scale gene expression profile in human pathogenic dermatophytes during infection, and points to putative virulence-associated mechanisms that make these micro-organisms the most successful aetiological agents of superficial mycoses.