957 resultados para Bacterial spot
Resumo:
Community-acquired pneumonia (CAP) is a common cause of morbidity among children. Evidence on seasonality, especially on the frequency of viral and bacterial causative agents is scarce; such information may be useful in an era of changing climate conditions worldwide. To analyze the frequency of distinct infections, meteorological indicators and seasons in children hospitalized for CAP in Salvador, Brazil, nasopharyngeal aspirate and blood were collected from 184 patients aged < 5 y over a 21-month period. Fourteen microbes were investigated and 144 (78%) cases had the aetiology established. Significant differences were found in air temperature between spring and summer (p = 0.02) or winter (p < 0.001), summer and fall (p = 0.007) or winter (p < 0.001), fall and winter (p = 0.002), and on precipitation between spring and fall (p = 0.01). Correlations were found between: overall viral infections and relative humidity (p = 0.006; r = 0.6) or precipitation (p = 0.03; r = 0.5), parainfluenza and precipitation (p = 0.02; r = -0.5), respiratory syncytial virus (RSV) and air temperature (p = 0.048; r = -0.4) or precipitation (p = 0.045; r = 0.4), adenovirus and precipitation (p = 0.02; r = 0.5), pneumococcus and air temperature (p = 0.04; r = -0.4), and Chlamydia trachomatis and relative humidity (p = 0.02; r = -0.5). The frequency of parainfluenza infection was highest during spring (32.1%; p = 0.005) and that of RSV infection was highest in the fall (36.4%; p < 0.001). Correlations at regular strength were found between several microbes and meteorological indicators. Parainfluenza and RSV presented marked seasonal patterns.
Resumo:
Ornamental fish culture is important as an economic activity and for biodiversity conservation as well. The species of the genus Trichogaster (Perciformes, Osphronemidae), popularly known as three-spot gourami, are among the several commercial species raised around the world. In the present work, eight specimens of Thrichogaster trichopterus from aquarium trade facilities were analyzed. The karyotype was composed of 23 pairs of subtelo/acrocentric chromosomes. Fluorescent in situ hybridization allowed identifying the 18S ribosomal gene at telomeric region on long arms of the largest acrocentric pair. On the other hand, the 5S rRNA gene is located at a proximal region on a pair of medium-sized chromosomes. Such information is extremely useful in face of the risks of introduction and the development of ornamental fish trade, once many fish species can be identified only by genetic studies.
Resumo:
Introduction: The characterization of microbial communities infecting the endodontic system in each clinical condition may help on the establishment of a correct prognosis and distinct strategies of treatment. The purpose of this study was to determine the bacterial diversity in primary endodontic infections by 16S ribosomal-RNA (rRNA) sequence analysis. Methods: Samples from root canals of untreated asymptomatic teeth (n = 12) exhibiting periapical lesions were obtained, 165 rRNA bacterial genomic libraries were constructed and sequenced, and bacterial diversity was estimated. Results: A total of 489 clones were analyzed (mean, 40.7 +/- 8.0 clones per sample). Seventy phylotypes were identified of which six were novel phylotypes belonging to the family Ruminococcaceae. The mean number of taxa per canal was 10.0, ranging from 3 to 21 per sample; 65.7% of the cloned sequences represented phylotypes for which no cultivated isolates have been reported. The most prevalent taxa were Atopobium rimae (50.0%), Dialister invisus, Pre-votella oris, Pseudoramibacter alactolyticus, and Tannerella forsythia (33.3%). Conclusions: Although several key species predominate in endodontic samples of asymptomatic cases with periapical lesions, the primary endodontic infection is characterized by a wide bacterial diversity, which is mostly represented by members of the phylum Firmicutes belonging to the class Clostridia followed by the phylum Bacteroidetes. (J Ended 2011;37:922-926)
The pst operon of enteropathogenic Escherichia coli enhances bacterial adherence to epithelial cells
Resumo:
Enteropathogenic Escherichia coli (EPEC) adheres in vivo and in vitro to epithelial cells. Two main adhesins, the bundle-forming pilus and intimin, encoded by the Up operon and eae, respectively, are responsible for the localized and the intimate adherence phenotypes. Deletion of the pst operon of EPEC abolishes the transport of inorganic phosphate through the phosphate-specific transport system and causes the constitutive expression of the PHO regulon genes. In the absence of pst there is a decrease in the expression of the main EPEC adhesins and a reduction in bacterial adherence to epithelial cells in vitro. This effect is not related to PHO constitutivity, because a Delta pst phoB double mutant that is defective in the transcription of the PHO genes also displayed low levels of adherence and expression of adhesins. Likewise, a PHO-constitutive phoR mutation did not affect bacterial adherence. The expression of the per operon, which encodes the Up and ler regulators PerA and PerC, is also negatively affected by the pst deletion. Overall, the data presented here demonstrate that the pst operon of EPEC plays a positive role in the bacterial adherence mechanism by increasing the expression of perA and perC and consequently the transcription of bfp and eae.
Resumo:
Many of the important changes in evolution are regulatory in nature. Sequenced bacterial genomes point to flexibility in regulatory circuits but we do not know how regulation is remodeled in evolving bacteria. Here, we study the regulatory changes that emerge in populations evolving under controlled conditions during experimental evolution of Escherichia coli in a phosphate-limited chemostat culture. Genomes were sequenced from five clones with different combinations of phenotypic properties that coexisted in a population after 37 days. Each of the distinct isolates contained a different mutation in 1 of 3 highly pleiotropic regulatory genes (hfq, spoT, or rpoS). The mutations resulted in dissimilar proteomic changes, consistent with the documented effects of hfq, spoT, and rpoS mutations. The different mutations do share a common benefit, however, in that the mutations each redirect cellular resources away from stress responses that are redundant in a constant selection environment. The hfq mutation lowers several individual stress responses as well the small RNA-dependent activation of rpoS translation and hence general stress resistance. The spoT mutation reduces ppGpp levels, decreasing the stringent response as well as rpoS expression. The mutations in and upstream of rpoS resulted in partial or complete loss of general stress resistance. Our observations suggest that the degeneracy at the core of bacterial stress regulation provides alternative solutions to a common evolutionary challenge. These results can explain phenotypic divergence in a constant environment and also how evolutionary jumps and adaptive radiations involve altered gene regulation.
Resumo:
We comparatively examined the nutritional, molecular and optical and electron microscopical characteristics of reference species and new isolates of trypanosomatids harboring bacterial endosymbionts. Sequencing of the V7V8 region of the small subunit of the ribosomal RNA (SSU rRNA) gene distinguished six major genotypes among the 13 isolates examined. The entire sequences of the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes were obtained for phylogenetic analyses. In the resulting phylogenetic trees, the symbiont-harboring species clustered as a major clade comprising two subclades that corresponded to the proposed genera Angomonas and Strigomonas. The genus Angomonas comprised 10 flagellates including former Crithidia deanei and C. desouzai plus a new species. The genus Strigomonas included former Crithidia oncopelti and Blastocrithidia cuiicis plus a new species. Sequences from the internal transcribed spacer of ribosomal DNA (ITS rDNA) and size polymorphism of kinetoplast DNA (kDNA) minicircles revealed considerable genetic heterogeneity within the genera Angomonas and Strigomonas. Phylogenetic analyses based on 16S rDNA and ITS rDNA sequences demonstrated that all of the endosymbionts belonged to the Betaproteobacteria and revealed three new species. The congruence of the phylogenetic trees of trypanosomatids and their symbionts support a co-divergent host-symbiont evolutionary history. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Microbial community composition was examined in two soil types, Anthrosols and adjacent soils, sampled from three locations in the Brazilian Amazon. The Anthrosols, also known as Amazonian dark earths, are highly fertile soils that are a legacy of pre-Columbian settlement. Both Anthrosols and adjacent soils are derived from the same parent material and subject to the same environmental conditions, including rainfall and temperature; however, the Anthrosols contain high levels of charcoal-like black carbon from which they derive their dark color. The Anthrosols typically have higher cation exchange capacity, higher pH, and higher phosphorus and calcium contents. We used culture media prepared from soil extracts to isolate bacteria unique to the two soil types and then sequenced their 16S rRNA genes to determine their phylogenetic placement. Higher numbers of culturable bacteria, by over two orders of magnitude at the deepest sampling depths, were counted in the Anthrosols. Sequences of bacteria isolated on soil extract media yielded five possible new bacterial families. Also, a higher number of families in the bacteria were represented by isolates from the deeper soil depths in the Anthrosols. Higher bacterial populations and a greater diversity of isolates were found in all of the Anthrosols, to a depth of up to 1 m, compared to adjacent soils located within 50-500 m of their associated Anthrosols. Compared to standard culture media, soil extract media revealed diverse soil microbial populations adapted to the unique biochemistry and physiological ecology of these Anthrosols.
Resumo:
A novel material comprised of bacterial cellulose (BC) and Laponite clay with different inorganic organic ratios (m/m) was prepared by the contact of never-dried membranes of BC with a previous dispersion of clay particles in water. Field emission scanning electron microscopy (FE-SEM) data of composite materials revealed an effective adhesion of clay over the surface of BC membrane; inorganic particles also penetrate into the polymer bulk, with a significant change of the surface topography even at 5% of clay loading. As a consequence, the mechanical properties are deeply affected by the presence of clay, increasing the values of the Young modulus and the tensile strength. However the maximum strain is decreased when the clay content is increased in the composite in comparison to pristine BC. The main weight loss step of the composites is shifted towards higher temperatures compared to BC, indicating that the clay particles slightly protect the polymer from thermal and oxidative decomposition. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
None
Resumo:
Our main goal is to investigate the question of which interest-rate options valuation models are better suited to support the management of interest-rate risk. We use the German market to test seven spot-rate and forward-rate models with one and two factors for interest-rate warrants for the period from 1990 to 1993. We identify a one-factor forward-rate model and two spot-rate models with two faetors that are not significant1y outperformed by any of the other four models. Further rankings are possible if additional cri teria are applied.
Resumo:
Bacterial cellulose/polymethacrylate nanocomposites have received attention in numerous areas of study and in a variety of applications. The attractive properties of methacrylate polymers and bacterial cellulose, BC, allow the synthesis of new nanocomposites with distinct characteristics. In this study, BC/poly(glycidylmethacrylate) (BC/PGMA) and BC/poly(ethyleneglycol)methacrylate (BC/PPEGMA) nanocomposites were prepared through in situ free radical polymerization of GMA and PEGMA, respectively. Ammonium persulphate (APS) was used as an initiator and N,N’methylenebisacrilamide (MBA) was used as a crosslinker in BC/PGMA. Chemical composition, morphology, thermal stability, water absorption, mechanic and surface properties were determined through specific characterization techniques. The optimal polymerization was obtained at (1:2) for BC/PGMA, (1:2:0.2) ratio for BC/GMA/MBA and (1:20) for BC/PPEGMA, with 0.5% of initiator at 60 ºC during 6 h. A maximum of 67% and 87% of incorporation percentage was obtained, respectively, for the nanocomposites BC/PGMA/MBA and BC/PPEGMA. BC/PGMA nanocomposites exhibited an increase of roughness and compactation of the three-dimensional structure, an improvement in the thermal and mechanical properties, and a decrease in their swelling ability and crystallinity. On the other hand, BC/PPEGMA showed a decrease of stiffness of three-dimensional structure, improvement in thermal and mechanical properties, an increase in their swelling ability and a decrease the crystallinity. Both BC/polymethacrylate nanocomposites exhibited a basic surface character. The acid treatment showed to be a suitable strategy to modifiy BC/PGMA nanocomposites through epoxide ring-opening reaction mechanism. Nanocomposites became more compact, smooth and with more water retention ability. A decrease in the thermal and mechanical proprieties was observed. The new nanocomposites acquired properties useful to biomedical applications or/and removal of heavy metals due to the presence of functional groups.
Resumo:
To investigate the role of β-(1-3)-D-glucan on 99mTc labelled Escherichia coli translocation and cytokines secretion in rats submitted to small bowel ischemia/reperfusion injury. Methods: Five groups (n=10 each) of Wistar rats were subjected to control(C), sham(S), group IR subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R), and group I/R+glucan subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R) and injected with 2mg/Kg intramuscular. Translocation of labelled bacteria to mesenteric lymph nodes, liver, spleen, lung and serum was determined using radioactivity/count and colony forming units/g(CFU/g). Serum TNFα, IL-1β, IL-6, IL-10 were measured by ELISA. Results: CFU/g and radioactivity/count were higher in I/R than in I/R+glucan rats. In C, S and S+glucan groups, bacteria and radioactivity/count were rarely detected. The I/R+glucan rats had enhancement of IL-10 and suppressed production of serum TNFα, IL-1β and, IL-6, compared to I/R untreated animals. Conclusion: The β-(1-3)-D-glucan modulated the production of pro-inflammatory and anti-inflammatory cytokines during bowel ischemia/reperfusion, and attenuated translocation of labelled bacteria
Resumo:
To investigate whether the alterations of the diverted colon segment mucosa, evidenced in fecal colitis, would be able to alter Bacterial Translocation (BT). Methods: Sixty-two Wistar male rats ranging from 220 to 320 grams of weight, were divided in two groups: A (Colostomy) and B (Control), with 31 animals each one. In group A, all animals underwent end colostomy, one stoma, in ascending colon; and in the 70th POD was injected in five rats, by rectal route – diverted segment - 2ml of a 0.9% saline solution in animals (A1 subgroup); in eight it was inoculated, by rectal route, 2ml of a solution containing Escherichia coli ATCC 25922 (American Type Culture Collection), in a concentration of 108 Colony Forming Unit for milliliters (CFU/ml) - A2 Subgroup; in ten animals the same solution of E. coli was inoculated, in a concentration of 1011 CFU/ml (A3 Subgroup); and in eight it was collected part of the mucus found in the diverted distal colonic segment for neutral sugars and total proteins dosage (A4 subgroup). The animals from the group B underwent the same procedures of group A, but with differences in the colostomy confection. In rats from subgroups A1, A2, A3, B1, B2, and B3 2ml of blood were aspirated from the heart, and fragments from mesenteric lymphatic nodule, liver, spleen, lung and kidney taken for microbiological analysis, after their death. This analysis consisted of evidencing the presence of E. coli ATCC 25922 CFU. Mann-Whitney and ANOVA Tests were applied as analytic techniques for association of variables. Results: The occurrence of BT was evidenced only in those animals in which inoculated concentration of E. coli ATCC 25922, reached levels of 1011CFU/ml, i.e. in Subgroups A3 and B3, although, being significantly greater (80%) in those animals without colostomy (subgroup B3) when compared to the ones with colostomy (20%) from the subgroup A3 (P <0.05). Lung, liver and mesenteric lymphatic nodules were the tissues with larger percentile of bacterial recovery, so much in subgroup A3, as in B3. Blood culture was considered positive in 60% of the animals from subgroup B3 and in 10% of those from subgroup A3 (p <0.05). There was greater concentration of neutral sugars, in subgroup A4 - mean 27.3mg/ml -, than in subgroup B4 - mean 8.4mg/ml - (P <0.05). Conclusion: The modifications in the architecture of intestinal mucosa in colitis following fecal diversion can cause alterations in the intestinal barrier, but it does not necessarily lead to an increased frequency of BT
Resumo:
To investigate the role of β-(1-3)-D-glucan on 99mTc labelled Escherichia coli translocation and cytokines secretion in rats submitted to small bowel ischemia/reperfusion injury. Methods: Five groups (n=10 each) of Wistar rats were subjected to control(C), sham(S), group IR subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R), and group I/R+glucan subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R) and injected with 2mg/Kg intramuscular. Translocation of labelled bacteria to mesenteric lymph nodes, liver, spleen, lung and serum was determined using radioactivity/count and colony forming units/g(CFU/g). Serum TNFα, IL-1β, IL-6, IL-10 were measured by ELISA. Results: CFU/g and radioactivity/count were higher in I/R than in I/R+glucan rats. In C, S and S+glucan groups, bacteria and radioactivity/count were rarely detected. The I/R+glucan rats had enhancement of IL-10 and suppressed production of serum TNFα, IL-1β and, IL-6, compared to I/R untreated animals. Conclusion: The β-(1-3)-D-glucan modulated the production of pro-inflammatory and anti-inflammatory cytokines during bowel ischemia/reperfusion, and attenuated translocation of labelled bacteria